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1 Preamble

1.1 Motivation

My desire to carefully analyze Psappha stemmed from my interest in
discrete-time 1-bit music. In this music there are only two “words” in the
musical alphabet. i.e., at any given time-point we can find one of two events:
‘0’ or ‘1’. Thus, the set of all possible events available at any given time-
point can be represented with just one bit. In addition, two time-points
(and thus two events) can not be arbitrarily close to each other. i.e., there
is a minimum time interval between events. This smallest time interval is
called the tatum (time atom) and all time intervals are integer multiples of
it.

The musical thinking behind Psappha is very close to this world. The
elements on the page (here called strokes) have no duration. At any given
time-point, there either is a stroke or not. Strokes are sometimes accented or
doubly accented, which strictly speaking puts Psappha outside of the world
of 1-bit music. In this analysis however, I ignore accents for the most part.

1.2 Rambling on Analysis and Modeling

How might one analyze this music? Within the Nattiez/Molino
framework,[16] there are three general approaches to his question: the poi-
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etic, the neutral and the esthesic. In the first we ask: How is it made?
What are the methods and tools employed by the composer to produce the
piece? Flint’s analysis[11] is mostly of this kind. She gives a pretty complete
account of Xenakis’ tools and his use of them in constructing Psappha. In
particular, she discusses Xenakis’ use of sieve and group theories to gener-
ate two different sets of materials. In the esthesic level we ask: What do
I hear? Here we can forget about the composer and the physical data per
se (the score or the sound), and focus on the perceptions impressed on us
by the stimulus. Then there’s the neutral level, the most common ground
for musical analyzes. This is an analysis of the data itself, be it a printed
score or a sonic rendition. While this tripartition may help conceptualize
the problem space, it is a bit of a simplification. There are a variety of
factors (socio-cultural, historical) that may affect and inform an analysis at
any of these three levels. Further, these levels may inform each other.

My main interest here is to reverse engineering Psappha, so to speak;
not to recover the methods used by Xenakis to construct it, nor to dis-
cuss the impressions that the piece imprints on me, but to reconstruct a
generative model, or models, from the data found in the score. i.e., to re-
cover the “code” and the syntactic “rules”(what Rowet calls the “synthetic
model”[17]) or tendencies that will simultaneously give us a compact rep-
resentation of the data and a “machine” that will generate sequences with
similar properties.

While this is primarily an objective data driven structural analysis (ob-
jective in the sense that the data being analyzed is mainly the score, share-
able and equally quantifiable by all), it is not unreasonable to ask, however,
if the model derived from the data has not been overestimated (overfitted)
from the point of view of perception. i.e., if the model encoding the piece
is not more complicated than is necessary or more rigid than is desired.
In his 1954 article The Crisis of Serial Music[23], Xenakis actually makes
an implicit invocation of Occam’s razor when he criticizes the weak rela-
tionship that he perceived to exist between the “complexity” of the serial
composition system and the simplicity of the sonic result perceived:

Linear polyphony is self-destructive in its current complexity.
In reality, what one hears is a bunch of notes in various regis-
ters. The enormous complexity prevents one from following the
tangled lines, and its macroscopic effect is one of unreasonable
and gratuitous dispersion of sounds over the whole sound spec-
trum. Consequently, there is a contradiction between the linear
polyphonic system and the audible result, which is a surface, a
mass.

This inherent contradiction with polyphony will disappear only
once sounds become totally independent. In fact, since these
linear combinations and their polyphonic superpositions are no



Xenakis’ Psappha (this is a DRAFT) 4

longer workable, what will count will be the statistical average of
isolated states of the components’ transformations at any given
moment.

A similar requirement can be set on a model or “synthetic analysis” of a
piece of music. What is the simplest structural model that can still render
perceptually accurate pieces?

However, if perception is to be factored in a musical analysis/model,
what kinds or elements of perception should one consider? One can argue
that there are at least as many ways of listening to music as there are lis-
teners. One could also argue, however, that there are families of listening
modalities. Expectation based listening, for example, is one of them. Some-
times, expectation plays an important role in the creation and reception of
music. Expectation, the prospect of the future given our knowledge of the
past, depends on what we know (or think we know) and our prior assump-
tions about the future. i.e., expectation depends on memory. But the future
is uncertain. Most of the time there is more than one thing that can happen
and we don’t know for sure what will happen. At best we have an accurate
idea of the likelihood of each of the possible futures. How much memory do
we need for our expectation to be as accurate as possible? How might we
introduce expectation into the analysis of a piece?

1.3 Tools and Method

In this analysis I focus on the statistical properties of the data found in the
score. I derive localized probabilistic models from this data in the form of
ε-machines (see Appendix F). Sieves (see Appendix D) are briefly discussed
to present Xenakis’ composition methods, and as point of reference and
comparison for the stochastic ε-machines.

Both tools are markedly different in a couple of interesting ways. ε-
machines are probabilistic, while sieves are strictly deterministic. Further,
ε-machines are time domain models while sieves define a “period domain”.1

1.4 Process, Sequence, Perceptual Stream

In general terms, we can say that a process is a well defined set of rules (or
space) capable of generating certain kinds of sequences. Here we will deal
more specifically with stochastic processes. We succinctly define a stochas-
tic process as a sequence or random variables S = . . . , Si−1, Si, Si+1, . . .
associated with a probability measure P(S).2

A sequence is an ordered collection of things. In Psappha, specifically,
a sequence is an ordered collection of consecutive strokes or points in the

1Sieves can be thought of as boolean analogues or Fourier analysis/synthesis (see Ap-
pendix D).

2See Appendix E.
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score. The notation X[a : b] refers to the sequence of stroke configurations,
or multi-sequence, in layer X spanning time points a and b, inclusive. A
subindex n indicates a sublayer, thus Xn[a : b] refers to the sequence of
strokes in sublayer n of layer X.

A perceptual stream is a single cohesive percept that unfolds over time.
It is well knows that a single sequence of sensory stimuli can give rise to more
than one perceptual stream.[2] This depends on the properties of the stim-
ulus and our own faculties of perception (awareness and attention). Stream
segregation refers to our ability to demultiplex or separate a sequence of
stimuli into multiple percepts (or perceptual streams).

1.5 General remarks about the score

1.5.1 Sections

For the purpose of this analysis we have divided the piece into the following
eight sections:

Section 1: [0 : 518] Section 5: [1411 : 1589]
Section 2: [519 : 739] Section 6: [1590 : 1720]
Section 3: [740 : 989] Section 7: [1720 : 2175]
Section 4: [990 : 1410] Section 8: [2176 : 2396]

These sections are clearly delimited by the entrance and/or exit of one or
several processes that contrast with those that precede or follow. There are,
however, processes that run across section boundaries and some processes
that span several sections.

1.5.2 Layers and Timbres

The score is composed of a total of six layers labeled A through F. All layers,
except E, have up to three sublayers numbered 1, 2 and 3; E has only one.
Each layer corresponds to a timbre category and a general register. Layers
A, B and C are woods and/or skins, layers D, E and F a variety of metals.
Each sublayer corresponds to a finer gradation of the register in each layer.
The performer is free to choose the sounds and relative registers he/she
considers appropriate.

1.5.3 Accents

Accent marks in Psappha are also open to interpretation. Xenakis lists five
alternative ways of interpreting the accents:3

3The notes in the score are originally in french: 1. intensité plus fôrte., 2. changement
brusque de timbre., 3. changement brusque de poids., 4. ajout brusque d’un autre son et
le jouer simultanement avec celui du temps non accentué., 5. combinaison simultanée des
signification précédentes.
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1. Greater intensity.
2. Sudden change in timbre.
3. Sudden change in weight. (?)
4. Sudden addition of another sound to be played simultaneously with

that of the non-accented time.(?)
5. Simultaneous combinations of the preceding interpretations.

1.5.4 Tempi

There are six tempo indications throughout the score: > 152MM at tick 0,
> 272MM at tick 740 (opening Section 3), > 110MM at tick 990 (opening
Section 4), > 134MM at tick 1720 (opening Section 7) and > 152MM at tick
2175 (opening Section 8), plus an accelérér indication at tick 1610 going from
> 110MM to > 134MM. The tempo markings indicate the minimum speed
at which the music should be played, suggesting that any speed higher than
this might be allowed, limited only by the performers capacity. However,
the acceleration indication at tick 1610 suggests also that the relative speeds
be preserved.

1.5.5 Hermeneutics

The openness of the tempo indications combined with the openness given
to the choice of sounds and execution of the accents inevitably brings up
the question of how to choose among the multiple combinations. In the
explanation notes, however, Xenakis states quite clearly what the general
guiding principle for these choices should be:4

Indicated are only the desired global sonorities that dress the
rhythmic structures and architectures of this piece. It is these
[the structures and architectures] that must be enhanced by the
balance between dynamics and timbres chosen out of ordinary
sonorities.

With this in mind, it is interesting to compare various performances of the
piece and attempt to deduce the interpretation of each performer, or to see
how one’s own interpretation might fit with different performances.

During this analysis I listened to three recordings of Psappha made by
three different performers: Pedro Carneiro[3], Roland Auzet[1] and Steven
Schick[18]. Figure 1 shows the waveforms of these recordings with sections
marked by shaded blocks. Immediately visible is the different choices of
tempo. Steven Schicks’ performance is generally slower than that of Carneiro
and Auzet. What motivated each performer’s choice of tempi?

4“Sont seulement indiquée les sonorités globales souhaitées, qui vêtiront les structures
et architectures rhythmiques de cette piéce. Ce sont elles qui doivent être mises en valeur
par des équilibres des puissances et des timbres choisis hors des sonorités banales.”
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Figure 1: Waveforms of three performances of Psappha. The top one is
from Pedro Carneiro, the middle one from Roland Auzet and the bottom
one from Steven Schick. Sections are demarcated by alternating block of
light and dark shades. Section 1 is divided in two subsections at tick 380 to
show the beginning of the important A[380 : 518] sequence.

There is much that can be said about the hermeneutics of Psappha to
fit the pages of this structural analysis. Here we would just like to pose the
question: what role does stream segregation play in the piece and how does
it influence the performer’s choice of tempi and timbres? In Psappha, which
combinations of timbres and tempi maximizes the possibility of perceiving
multiple streams from a single sequential ordering of strokes? The question
is left open.

2 Analysis and Modeling

2.1 The Conception of Time in Psappha

Musical time is usually conceptualized in two complementary ways: in one,
relatively large time intervals are divided into progressively smaller parts;
in the other, small indivisible time units, called tatums (time-atoms), are
added to create a variety of larger intervals. The first is referred to as divisive
rhythmic construction, the second as additive.[19]

In Psappha Xenakis’ rhythmic exploration falls squarely in the world
of additive rhythms. This is quite clear from the moment we first see the
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score. The piece is entirely written on a grid with no standard symbolic
rhythmic notation. Except for a very conspicuous quintuplet in B[70 : 74]
(the only tuplet in the whole score), every stroke falls on a time point that
is a multiple of the tatum—equivalently, every ISI (Inter Stroke Interval)
is a multiple of the tatum. What is the tatum in Psappha? In tick 2023,
Xenakis gives the indication: “two or three strokes per point” (2 ou 3 coups
par point) for the strokes with tremoli. In this analysis I interpret these
as two strokes per point. Because these tremoli strokes are half a measure
apart (the smallest distance between points in the score), the tatum is then
1/4 of a measure.

2.2 Section 1 [0 : 518]

2.2.1 B[0 : 39]

Sieve Decomposition According to Flint[11], Xenakis constructed the
sublayer sequence B2[0 : 39] by means of his theory of sieves (see Appendix
D). The expression found in Xenakis’ sketches is

[(80∪81∪87)∩(51∪53)]∪ [(80∪81∪82)∩50]∪ [83∩(50∪51∪52∪53∪54)]∪
[84∩ (50∪51∪52∪53∪54)]∪ [(85∪86)∩ (52∪53∪54)]∪ (81∩52)∪ (86∩51)

The expression indeed yields the sequence [0, 1, 3, 4, 6, 8, 10, 11, 12, 13,
14, 16, 17, 19, 20, 22, 23, 25, 27, 28, 29, 31, 33, 35, 36, 37, 38], which
corresponds to the time-points in the score occupied by strokes. Taking the
measure as an assumed constant delta-time, the corresponding boolean train
of the sequence is [1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0].

The two (50 ∪ 51 ∪ 52 ∪ 53 ∪ 54) sub-expressions defining the sieve are
intriguing as they are equivalent to the simpler 10, and because the congruent
bases of 0 (mod 1) is the set Z of all integers, it follows that 83 ∩ 10 = 83.
Thus, the sieve can more compactly be expressed as

[(80 ∪ 81 ∪ 87) ∩ (51 ∪ 53)] ∪ [(80 ∪ 81 ∪ 82) ∩ 50]∪
[(85 ∪ 86) ∩ (52 ∪ 53 ∪ 54)] ∪ 83 ∪ 84 ∪ (81 ∩ 52) ∪ (86 ∩ 51)

Is it possible to recover the original expressions defined by Xenakis to
construct the stroke sequences, from the sequences themselves? The an-
swer is no, not in the general case, because there can be multiple logi-
cal expressions that yield the same sequence. For example, the sequence
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[. . . ,−3,−2, 0, 2, 3, 4, 6, . . .] can be generated from rc(2, 0)∪rc(3, 0) and from
rc(2, 0)⊕rc(6, 3). We can, however, derive an equivalent expression; one that
is different from Xenakis’ original expression but that will nonetheless yield
the same number sequence. The application of an OR decomposition5 on
B2[0 : 39] yields the following residue classes: 83, 84, 103, 200, 208, 2011,
2016, 2017, 401, 406, 4010, 4014, 4022, 4025, 4029, 4038. Thus the following
expression also generates B2[0 : 39]:

83 ∪ 84 ∪ 103 ∪ 200 ∪ 208 ∪ 2011 ∪ 2016 ∪ 2017∪
401 ∪ 406 ∪ 4010 ∪ 4014 ∪ 4022 ∪ 4025 ∪ 4029 ∪ 4038

As expected, the moduli of the residue classes resulting from this OR de-
composition are multiples or 8 and 5.

Continuing in this fashion, we can OR-decompose the remaining two
sublayer sequences to obtain sieve expressions that will characterize them in
terms of simple periodic basis. However, looking at B[0 : 39] for a moment
we see a simple pattern. B1[0 : 39] is the complement of B2[0 : 39], so we
can define it simply as such:

B1[0 : 39] = B2[0 : 39]c

Flint[11] characterizes B3[0 : 39] as a sieve constructed from elementary
residue classes with periods 8 and 5 (i.e., rc(8, n) and rc(5,m)) much like
Xenakis’ own definition of B2[0 : 39]. B3[0 : 39] can, however, be directly
derived from B1[0 : 39] as its displacement by one:6

B3[0 : 39] = B1[0 + 1 : 39 + 1]

The fact that we have been able to, very simply and compactly, define the
sublayer sequences in B[0 : 39] in terms of each other tells us something
about their affinity. Actually, we can recover any two sublayer sequences
from any one given sublayer sequence.7 This tightness of interaction (or
coupling) between sequences is an important factor to consider when mod-
eling them. In the “sieve domain”, we are better off (have a simpler model)
defining sieves in terms of each other, as we have done above, than we are
defining each sequence anew with it’s own logical expression. A similar
principle applies when we model these sequences in the time domain.

5See Appendix D for an explanation of the OR decomposition.
6Note that the attack at tick 40 in sublayer B1 is not part of the complement of either

B2[0 : 39] or B2[40 : 79], but, according to Flint[11], a stroke added by Xenakis to
demarcate a change of sieve.

7While this is an interesting property of B[0 : 39] as a whole, it does not follow that
the sequence itself or the sublayer sequences are necesarily “interesting”. Any number of
sequences can be constructed with these constraints. e.g. B2[m : n] = noise, B1[m : n] =
B2[m : n]c, B3[m : n] = B1[m+ 1 : n+ 1].
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Stochastic Model We have studied the structure B[0 : 39] in the period
domain[19] using residue classes a la Xenakis. How should we model it in
the time domain? What is the temporal behavior of the B[0 : 39]? We
could study and model each sublayer sequence B1,2,3[0 : 39] independently
and hope that both the individual and collective behaviors of the sequences
returned by the model are “satisfactory”, i.e., that they present the same
statistical characteristics as the originals found in the score. Given the clear
coupling that exists between the sublayer sequences, however, it makes more
sense to consider B[0 : 39] as a whole. We can think of B[0 : 39] as a three-
dimensional sequence (a multi-sequence) in which each dimension can have
one of two values (0 or 1) giving a total of eight (23) possible configurations
per time-point:

Observe, however, that only configurations
.
.
.

r
,

.

.

.
r and

.

.

.
rr (numbered 1, 2 and 6)

appear in B[0 : 39]. We call each of these a letter, and the set of all letters
found in the sequence, the alphabet: A = { .

.

.

r
,

.

.

.
r, .

.

.
rr}. Thus, the cardinality

of the alphabet of B[0 : 39] is three. Now we look at the temporal depen-
dencies between consecutive letters. Because there are three letter in the
alphabet, there are three possible futures at any given time-point. What
is the likelihood of each possible future? Notice, for example, that letter

.

.

.

r
always follows letter

.

.

.
rr: P(

.

.

.

r
| ...rr) = 1.8 This means that having heard

.

.

.
rr we

can be certain that we will hear
.
.
.

r
immediately after. Thus we say that

this process has memory. How much memory? If we retain the last two
events instead of just the last one, can we improve our prediction? Table
1 shows the conditional probability of each letter given each of the three
possible subsequences (words) of length 1 as found in B[0 : 39]. Table 2
shows the conditional probabilities of each letter given the subsequences of
length 2.9 It is clear from the Tables that the conditional probabilities do

subsequence morph

[
.
.
.

r
] P(

.

.

.

r
| ...
r
) = 0 P(

.

.

.
r| ...r) = 7

12 ≈ 0.58 P(
.
.
.
rr| ...r) = 5

12 ≈ 0.42
[

.

.

.
r] P(

.

.

.

r
| ...r) = 0 P(

.

.

.
r| ...r) = 6

14 ≈ 0.43 P(
.
.
.
rr| ...r) = 8

14 ≈ 0.57
[

.

.

.
rr] P(

.

.

.

r
| ...rr) = 1 P(

.

.

.
r| ...rr) = 0 P(

.

.

.
rr| ...rr) = 0

Table 1: Conditional probabilities over pasts of length L = 1 obtained from
B[0 : 39].

8This is obvious from the definitions of B3[0 : 39] and B1[0 : 39] given above.
9In this analysis all the probabilities are estimated simply by counting the relative

frequencies of the words found in the sequences. See Appendix E for more details.
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subsequence morph

[
.
.
.

r .
.
.
r] P(

.

.

.

r
| ...
r .
.
.
r) = 0 P(

.

.

.
r| ...r .

.

.
r) = 3

7 ≈ 0.43 P(
.
.
.
rr| ...r .

.

.
r) = 4

7 ≈ 0.57
[

.

.

.
r .
.
.
r] P(

.

.

.

r
| ...r .

.

.
r) = 0 P(

.

.

.
r| ...r .

.

.
r) = 3

6 = 0.5 P(
.
.
.
rr| ...r .

.

.
r) = 3

6 = 0.5
[

.

.

.
rr .
.
.

r
] P(

.

.

.

r
| ...rr .

.

.

r
) = 0 P(

.

.

.
r| ...rr .

.

.

r
) = 7

12 ≈ 0.58 P(
.
.
.
rr| ...rr .

.

.

r
) = 5

12 ≈ 0.42
[

.

.

.

r .
.
.
rr] P(

.

.

.

r
| ...
r .
.
.
rr) = 1 P(

.

.

.
r| ...r .

.

.
rr) = 0 P(

.

.

.
rr| ...r .

.

.
rr) = 0

[
.
.
.
r .
.
.
rr] P(

.

.

.

r
| ...r .

.

.
rr) = 1 P(

.

.

.
r| ...r .

.

.
rr) = 0 P(

.

.

.
rr| ...r .

.

.
rr) = 0

Table 2: Conditional probabilities over pasts of length L = 2 obtained from
B[0 : 39].

not change as we go from words of length 1 to words of length 2. This means
that remembering two past letters instead of just one will not improve our
prediction of the future. What about retaining three? Will this improve
our forecast? Instead of looking at more probability tables, we measure the
entropy H(L), entropy gain ∆H(L) and predictability gain ∆2H(L) of the
sequence at growing word lengths L.10 Looking at the entropy gain in Figure
2 it is clear that increasing our memory to three letters will not improve our
estimates of the future. Notice how the entropy gain plateaus at lengths 2, 3
and 4, and that the predictability gain at lengths 3 and 4 is 0. This suggests
that a stochastic model of B[0 : 39] should be quite simple, needing no more
memory than the previous letter at any given time. You may wonder why
I have chosen to ignore the predictability gain obtained at L > 4. The new
predictability gained at L = 5 would seem to suggest that the process inded
has more memory than I have suggested. This is, however, not necessarily
the case. The reason is that the statistical trust boundary (Ltb)11 of B[0 : 39]
is at L = 3, since 33 = 27 < length(B[0 : 39]) = 40 < 34 = 81. Thus, we
cannot assume that any predictability gain beyond this point is a real at-
tribute of the process. More likely it is an attribute of the faulty statistics
derived from limited amounts of data.

We can now attempt to derive a stochastic model of the sequence in
the form of an ε-machine.12 The two important parameters in Shalizi’s ε-
machine reconstruction algorithm[20] are the maximum subsequence length,
Lmax, and the significance level, α. Lmax will have to be smaller than Ltb.
Lmax sets a limit to the ammount of memory the derived model will have.
The significance level (α) sets the tolerance in establishing an equivalence
between different morphs. Notice that the morphs of the subsequences [

.

.

.

r .
.
.
r],

[
.
.
.
r .
.
.
r] and [

.

.

.
rr .
.
.

r
] in B[0 : 39] are quite close, with that of [

.

.

.
r .
.
.
r] being exactly

uniform and those of [
.
.
.

r .
.
.
r] and [

.

.

.
rr .
.
.

r
] fairly close to uniform. Should these three

10See Appendix E for an overview of information theory.
11See Appendix E.
12See Appendix F for an overview of ε-machines.
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Figure 2: Entropy (H(L)), entropy gain (∆H(L)) and predictability gain
(∆2H(L)) for sequences B[0 : 39] and B1,2,3[0 : 39] at increasing subsequence
lengths L.

subsequences be considered equivalent in terms of their predictive contours?
What α should we use in our model estimation? The choice is, unfortunately,
ultimately arbitrary, but the existence of α can be justified on a couple of
grounds:

1. There’s always a limited amount of data, which means that the derived
probability measures will never be exact.

2. There can be noise in the sequence being studied. This is not applica-
ble here, but is a factor in other kinds of data.

3. Perceptual discrimination. This is usually not a factor in other kinds
of implementations, but here we can justitfy a particular choice of α
on these grounds too. Does the resulting model sound more random
than the original? If so, pump-up α, otherwise, keep or bring it down.

Here we use a significance level of 0.1 and a maximum length Lmax of 3
in the ε-machine reconstruction of B[0 : 39]. The result is shown in Figure
3). Notice that the graph has only two states, which means that the three
close-to-uniform morphs discussed above have been considered equivalent
and have been put together in the same causal state.
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0  2 : 0.51 
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 6 : 0.49  1 : 1.00 

Figure 3: ε-machine reconstruction of B[0 : 39] obtained with parameters
Lmax = {2, 3, 4} and α = 0.1. Each numbered circle represents a causal state.
Edges are labeled l : p, where l is the letter in the alphabet corresponding
to that edge and p is the probability that that letter will follow given the
current state. The letters, here represented as numbers, map to the stroke
configurations as follows:

.

.

.

r
= 1,

.

.

.
r = 2,

.

.

.
rr = 6.

2.2.2 B[40 : 79]

B[40 : 79] is quite similar to the opening B[0 : 39]. The same tight
relationship between sublayers that we saw in B[0 : 39] is found here. B1[40 :
79] is again the complement of B2[40 : 79]. Here B3[40 : 79] is not a simple
displacement of B1[40 : 79]. However, B3[40 : 79] can still be derived from
both B2[40 : 79] and B1[40 : 79] as their intersection:

B3[40 : 79] = B1[40 + 1 : 79 + 1] ∩B2[40 : 79]

As can be inferred by the resemblance between B[0 : 39] and B[40 : 79],
Xenakis used a very similar procedure to construct both sequences. I won’t
go over Xenakis’ sieve expression for B2[40 : 79] here again. However, it is
worth pointing out that, according to Flint, the conspicuous quintuplet (the
only tuplet in the whole piece) in B2[70 : 74] is explained by Xenakis’ desire
to fit a sieve with 42 points per cycle (using residue classes with moduli 7
and 6) into the same forty measures occupied by B[0 : 39]. The reader is
referred to Flint[11] for the details.

Stochastic Model As before, we perform a preliminary statistical anal-
ysis of multi-sequence B[40 : 79] and its sublayer sequences B1,2,3[40 : 79].
The resulting statistics are quite similar to those of B[0 : 39] (see Figure
4). This is expected given the similarity between the two sequences. Notice,
however, that in this case we do have a slight increase in predictability gain
as we go from 2 to 3 and to 4 word lengths.
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The ε-machine derived from B[40 : 79] is slightly more complex than the
one obtained from B[0 : 39] (see Figure 5). This is due to the presence of
consecutive

.

.

.

r
configurations absent in B[0 : 39].
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Figure 4: Entropy (H(L)), entropy gain (∆H(L)) and predictability gain
(∆2H(L)) for sequences B1,2,3[40 : 79] and B[40 : 79] at increasing subse-
quence lengths L.

0  2 : 0.45 

1

 6 : 0.55 

2

 1 : 1.00 

 2 : 0.53 

 6 : 0.13 

 1 : 0.33 

Figure 5: ε-machine reconstruction of B[40 : 79] obtained with parameters
Lmax = {2, 3, 4} and α = 0.1.
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2.2.3 B[80 : 167]

In B[80 : 167] we find a treatment of the sublayers that differs from that
found in the first 80 measures. B2[80 : 167] is a steady and unchanging
alternation between 1 and 2 measure ISIs: [. . . , 1, 2, 1, 2, . . .], and can be
compactly represented as rc(3, 0)∪rc(3, 1). A period 3 cyclic pattern is also
suggested in both B1[80 : 167] and B3[80 : 167], but every now and then
the otherwise constant 3 measure ISIs become 4 measures long, one period
at a time—except for the two consecutive 4 measure ISIs in B3[149 : 157].
i.e., these simple quasi-periodic sequences seem to be phase shifted (delayed,
never anticipated) to alter the relationships between them and the steady
B2[80 : 167] that serves as a reference.13

The predominance of period 3 is visible also in the entropy measures
(Figure 6) of all four sequences B1,2,3[80 : 167] and B[80 : 167]; notice how
the entropy gain suddenly plateaus at L = 3 for all four sequences. Because
B2[80 : 167] is the only perfectly periodic sequence, it is the only one that
reaches a zero entropy gain.

A mechanical model suggests itself from these observations. Imagine
three spinning wheels or gears of equal radii touching each other by the
edge. One of the wheels (B2[80 : 167]) steadily rotates and drives the
other two which, due to faulty contact with the driver, cannot keep up and
slip every so often (see Figure 7). What is the level of contact/coupling
between the wheels? i.e., What is the degree of interdependence between
sublayer sequences? Taking the normalized mutual information distance
D(X,Y )14 between all three sublayer sequences (Figure 8) we see that they
are almost completely independent of each other. i.e., the coupling between
sublayers found in B[0 : 39] and B[40 : 79] is absent. See, for comparison,
the normalized mutual information distances between sublayer sequences in
B1,2,3[0 : 39] and B1,2,3[40 : 79] (Figure 9). From the point of view of our
mechanical model, this suggests that the wheels have very little coupling,
if any. More likely they are just driving themselves independently of each
other, with wheels 1 and 3 (B1[80 : 167] and B3[80 : 167]) simply stopping
randomly every now and then for only one time-step (one measure). Given
that the sublayer sequences are independent, it makes more sense to model

13B3[80 : 167] is phase-shifted 7 times, at ticks 90, 103, 110, 129, 139, 149 and 153.
B1[80 : 167] is phase-shifted 3 times, at ticks 118, 131 and 141.

14See Appendix E
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Figure 6: Entropy measures for B[80 : 167] and B1,2,3[80 : 167] at increas-
ing block lengths L. The entropy gain (∆H(L)) drops and plateaus at L = 3
due to the presence of a strong period 3 structure in all sublayer sequences.

Figure 7: Three-gear model of sequence B[80 : 167].

each sequence independently than to take them together as a single multi-
sequence as we did with B[0 : 39] and B[40 : 79]. Just as storing more
memory than necessary does not give us a better prediction of the future,
modeling a collection of independent sequences together as one will not
give us a better model i.e., it will not give us a model that will generate
multi-dimensional sequences with more accurate statistics than those of thee
parallel independent models.

Using sieves, B2[80 : 167] can be compactly expressed as rc(3, 0) ∪
rc(3, 1), as we have already seen. As per B1,3[80 : 167], the intuition is
to model them as some form of periodic sequences with noise. Within the
framework of sieve theory, however, it is not quite possible to represent these
compactly.

We thus turn to our stochastic model once more. We compute a stochas-
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Figure 8: The normalized mutual information distance D(X,Y ) between
sublayer sequences B1,2,3[80 : 167]. The distance between sublayers 2 and 3,
and sublayers 1 and 3 is very close to the maximum distance of 1, showing a
complete independence between them. Sublayers 1 and 2 are at a constant
distance of slightly above 0.8, with no change at increasing L.
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Figure 9: The normalized mutual information distance D(X,Y ) between
sublayer sequences B1,2,3[0 : 39] and between sublayer sequences B1,2,3[40 :
79]. For both, sublayers 1 and 2 share the exact same information and
are thus redundant to each other. i.e., their distance is 0. The information
distance between sublayers 1 and 3, and between 2 and 3 is the same, starting
big for L = 1 and diminishing gradually as L increases.

tic model of each sublayer sequence independently. The three resulting ε-
machines are shown in Figure 10.

It is interesting to note that, according to Flint, Xenakis composed B[80 :
167] “intuitively” i.e., without the formalization found in B[0 : 39] and
B[40 : 79]. This can explain the free play that we have observed between the
sublayers. Xenakis may have been thinking precisely about phase shifts to
try out the various configurations that result between sublayers as patterns
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Figure 10: The three ε-machines obtained from the independent sublayer
sequences B1,2,3[80 : 167]. Parameters used where Lmax = {3, 4, 5} and
α = 0.1.

are shifted. To what extent are the phase relationships between all three
sublayer sequences explored? Since all three sublayer sequences B1,2,3[80 :
167] have period three (ignoring the noise component), each can be phase-
shifted to three indexes: 0, 1, and 2. Thus, both sequences B1,3[80 : 167] can
together occupy nine (32) different phase positions relative to B2[80 : 167].
The displacements found in B[80 : 167] result in six of the nine possible
phase configurations between the three sublayers (see Table 3).

B1 phase B3 phase measures

0 0
0 1 [122 : 130]
0 2 [131 : 133]
1 0
1 1
1 2 [134 : 139]
2 0 [107 : 112], [143 : 151]
2 1 [80 : 91], [113 : 118], [152 : 154]
2 2 [92 : 103], [155 : 166]

Table 3: Phase relationships between B1[80 : 167] and B3[80 : 167] relative
to B2[80 : 167].

2.2.4 B[200 : 519]

The regularly pulsating “machines” found in B[0 : 200] seems to break
down and loose power at tick 200. B[200 : 519] is a gradual scattering
and slowing down of B[0 : 200]-like stroke configurations. The temporal
stretching (density thinning) of the layer is accompanied by a gradual general
decent in pitch, as noted in the score at tick 204: “The B voices descend
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progressively towards the low sound of C3, which they reach at 519.”15 Thus,
B[200 : 519] bridges two otherwise unrelated processes and sound worlds:
Section 1’s opening timbre and tempo and Section 2’s introduction of layer
C and the slower tempi that follow.

2.2.5 Properties of B-like sequences

The three multi-sequence fragments covered so far (B[0 : 39], B[40 : 79] and
B[80 : 167]) share two clear properties:

1. Both single strokes and simultaneous strokes per time-point are pos-
sible. Present in B[0 : 200] are all but one of the 8 possible three-
sublayer stroke configurations:

.

.

. ,
.
.
.

r
,

.

.

.
r, .

.

.

rr, .
.
.r, .

.

.

rr and
.
.
.
rr, but not

.

.

.

rrr.
2. The two ISIs found are 1 and 2 measures long.

For future reference, I will refer to sequences that have these two properties
as B-like sequences.

2.2.6 A[380 : 518] and other layer A sequences

In contrast to layer B, layer A has a fragmentary nature. While layer B
feels like a single long sequence with relatively smooth and gradual trans-
formations, layer A is characterized by abrupt alternations between silence
and sound. A fragmentary quality can also be observed in the stroke se-
quences themselves. Some of these sequences are segments of other layer A
sequences that closely follow or precede them. e.g., A[275.5 : 296] is a frag-
ment of A[380 : 518] (A[275.5 : 296] = A[451.5 : 473]), and A[327.5 : 336]
is in turn the last 18 strokes of A[275.5 : 296], with a glitch: a missing
stroke at time-point 331.5. From these observations, and from the fact that
a fragment of A[380 : 518] also reappears as a kind of coda at the very end
of the piece (see Section 2.5), it is clear that A[380 : 518] is a well defined
and recurrent structure in Psappha. Thus, I will here focus on this sequence.

With a few exceptions, A[380 : 518] has the following general properties:
15“Les voix B descendent progressivement vers le grave de C3 qu’elles atteignent à 519”.



Xenakis’ Psappha (this is a DRAFT) 20

1. At any given time-point there is at most one stroke. i.e., There are no
simultaneities. Exception at tick 390.

2. Two consecutive strokes fall always on different sublayers.
i.e., if A[n] =

.

.

.

r
then A[n+ 0.5] =

.

.

.
r or

.

.

.r. Exceptions at [403 : 403.5]
and [493 : 493.5].

3. There is an attack every half a measure. Exceptions at time-points
390.5, 477.5, 478.5 and 479.5.

All three properties make A[380 : 518] clearly distinct from the layer B
sequences seen so far. For future reference, I will call those sequences that
exhibit these properties A1-like. These properties suggest that A[380 : 518]
was constructed differently from the sequences in layer B covered so far, or at
least with markedly different criteria. Indeed, Flint[11] tells us that Xenakis
composed it by sequencing and dovetailing the six possible permutations of
sequential strokes on the three sublayers, all formalized under a group the-
oretic framework. I will not go into Xenakis’ methods again here. Instead,
as suggested in the introduction, I will focus on the data and attempt the
reconstruction of a stochastic model from it.

It is clear upon hearing and seeing the score that A[380 : 518] has a lot
of internal repetition. What is the extent of this repetition? We find that
the longest sequence that repeats is A[412 : 430] with a length of 37 strokes
(18.5 measures), reappearing at A[448.5 : 466.5]. This is clearly visible in
the boolean auto-correlogram computed from the sequence (Figure 11).16

The glitches or pulse discontinuities at A[390.5] and A[477 : 480] can also be
clearly seen. As we increase the subsequence length L in the autocorrelation
analysis, we begin to see a trend that roughly divides the sequence in two.
At L = 8, we see that some subsequences that appear at the very beginning
of A[380 : 518] reappear a few times, only up to about two thirds of the
sequence, while some subsequences that appear for the first time after one
third of the sequence repeat up to the very end.

Stochastic Model Property 1 mentioned above is evidence enough of
sublayer interaction. It is clear then that A[380 : 518] is best treated as a
single multi-sequence for our modeling purposes. The internal repetition in
the multi-sequence suggests a process with more memory than that found in
the layer B sequences. The predictability gain plot of A[380 : 518] shows a
strong “connection” between consecutive pairs of strokes (Figure 12). This
is also expected from property 2. After the relatively large negative peak
at L = 2, the predictability gain drops markedly at L = 3, but stays rela-
tively constant around -0.1 and does not reach 0. While the statistical trust

16For a given sequence A, the auto-correlogram is computed by taking every subsequence
of length L in A and comparing it to every other subsequence in A. If the segments are
identical we have a match, otherwise we don’t.
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Figure 11: Boolean auto-correlogram of A[380 : 518] at increasing lengths
L. Black dots indicate exact match (identical subsequences), white space
indicates differing subsequences.
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Figure 11: Continued...
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Figure 12: Entropy (H(L)), entropy gain (∆H(L)) and predictability gain
(∆2H(L)) for sequences A[380 : 518] and its sublayer sequences at increasing
block-lengths L.

boundary of A[380 : 518] is Ltb = 3, the soft statistical trust boundary is 4.
This is due to the statistically insignificant presence of stroke configurations
.
.
.

rr and
.
.
. . Thus, we cannot freely interpret the entropy measures for L > 4.

As it appears in the score, sequence A[380 : 518] has the following 5
letter alphabet:

However, as noted in property 1, the stroke configuration
.
.
.

rr appears only
once in the whole sequence, making it negligible for our modeling purposes;
thus, we remove it from the alphabet.17

We now attempt an ε-machine reconstruction from A[380 : 518] using
parameters Lmax = 4 and α = 0.1. Figure 13 shows the reconstructed
ε-machine. One important thing to note is that, due to the short Lmax
used in the reconstruction, there is no hope that this model will capture the

17Remember that the larger the alphabet, the longer the sequence must be in order to
recover from it accurate statistics (see Appendix E).
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Figure 13: A single ε-machines reconstruction of A[380 : 518]. Parameters
used where Lmax = 4 and α = 0.1.

subtle trend that we have observed in the auto-correlogram for subsequences
of length L > 7. To overcome this difficulty we might think of dividing
the sequence in two and model each half independently. However, shorter
sequences mean smaller statistical trust boundaries, which in turn imply
smaller Lmax, and since the trend is visible for sequences longer than 7
strokes, this will not help. Thus we are left with a model that has less
memory than what the original sequence appears to have. There’s nothing
to prevent us from setting Lmax > Lstb of course, but the model will begin
to exhibit probability 1 transitions caused in part by the limited amount of
data in the sequence relative to the number of possible Lmax-length words.
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2.3 Section 2 [519 : 739]

2.3.1 Meta-processes

In Section 1, layers A and B are completely independent. They do not
have structural interactions; they do not seem to “know about each other”.
Section 2 is more complex at this higher level. In this section, layers A, B
and C do interact. Layers B and C seem to be coupled, and together form
a process BC; this is especially clear after tick 594. Further, layer groups A
and BC alternate and almost never sound together. Exceptions of this can
be seen in the range [700 : 703] and tick 643.18

We can think of this alternation as layers communicating to “take turns”.
This pattern or structure can be modeled as a linked list19 of ε-machines,
where each process holds a reference to its alternating partner; process A has
a reference to process BC and vice versa. Another way of thinking about this
is by considering the existence of a third process (a meta-process) governing
these two other processes taking place in layer groups A and BC. In this
model, layers A and BC don’t have to “know about each other”. They
just start and stop when they are told to by the meta-process orchestrating
them. This is a hierarchical model, and it resembles the structure of nested
lists. Yet a third model is that of a single (more complex) process consisting
of a single ε-machine graph characterized by two local and highly connected
clusters that are in turn connected to each other at least at one node.20 I
will keep the hierarchic meta-process model in mind for what follows, as it
is easier to visualize.

What are the characteristics of this meta-process driving the two pro-
cesses in layers A and BC? What is its behavior? Very generally, what we
see is a stepped, irregular acceleration. Xenakis starts with a slow alter-
nation between A and BC and then, in about three steps, accelerates the
rate of alternation until the subprocesses last only one stroke. The section
begins with each of the two subprocesses A and BC lasting from between 11
to 42 measures long, and ends with each lasting only half a measure. The
perceptual effect is that of two alternating processes that gradually fuse and
become one due to the increase in frequency of alternation.

18The coincidences between strokes in layers A and BC at measures 643, 700, 701, 702
and 703 contradict this hypothesis of a strict alternation between two processes A and BC.
One could certainly view the whole section as a single high-dimensional process composed
of all three layers A, B and C, but this also presents the practical problem of the curse of
dimensionality, which we will encounter in Section 7. From a purely pragmatical point of
view, these exceptions might be considered as posterior additions to a sequence resulting
from the strict alternation of independent processes.

19A linked list is a data structure that consists of a sequence of data records, each of
which references the next record in the sequence.

20This model is interesting in that it is a single “flat” potentially rhizomeatic graph but
with fuzzy hierarchies implied by the state (node) transition probabilities.
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2.3.2 Subprocesses A and B

The short isolated stroke fragments found in A[519 : 740] have exactly the
same properties that we observed in A[380 : 518], with two exceptions: the
doubly repeated strokes (three consecutive strokes on the same sublayer) in
the ranges [702 : 703] and [724.5 : 756.5].21 Likewise, the sequences found
in B[519 : 740] recall those found in B[0 : 518]. Thus we continue to see
A1-like sequences in layer A and B-like sequences in layer B. The B-like
sequences we find here have two speeds: the original rate found in B[0 : 39]
of 1 s/m and a slower one of 1/2 s/m.22 The first three sequence fragments
that appear in layers BC have a rate of 1/2 s/m. After this (tick 631), all the
strokes in BC imply a constant rate of 1 s/m. In the range [631 : 670], the
strokes in layer B become more erratic and the sequence almost completely
monophonic. At tick 672, the layer recovers its B-like characteristics.

2.4 Section 3 [740 : 989]

The whole section is a poly-tempi canon. The opening B[0 : 39] sequence
reappears verbatim three times (with the exception of a few temporal dis-
placements, to be discussed below) in layers A, B and C. Each layer carries
the sequence at a different rate. After opening with five foreign strokes
([740 : 759]), layer C presents the first instance of B[0 : 39] at a rate of 5.5
m/s. Layer A follows, coming in at tick 772.5 and reproducing B[0 : 39] at
a rate of 2.5 m/s. B[0 : 39] is restated one last time on layer B with 3.5
m/s, starting at tick 790.

There’d be little to nothing more interesting to say about this section if
it weren’t for the displacements of some strokes from their expected time-
points. In this context there are two kinds of displacements: (1) time based
displacement, or displacement relative to the absolute time grid (time jitter)
, and (2) delta-time displacement, or displacement relative to the expected
ISI (delta-time jitter). All the displacements found in the sequences on layers
A and C are time based. This can be concluded because all other points in
the sequence coincide with a constant periodic delta function (see Appendix
D). In other words, the lengthening of the ISI preceding a displaced point
is compensated by the shortening of the following ISI, and vice versa. For
example, strokes on time-point 796.5, layer C, are displaced half a measure
from 797. The ISI between this and the previous point is 5 measures, but
the ISI between this point and the next is 6 measures: 5 + 6 = 11, the
expected time interval between the previous and the next points. Displaced
points in layer A are at ticks 824.5 and 862. Displaced points in layer C are
at ticks 796.5, 830.5 and 858.5.

21Only four of these doubly repeated strokes (at time-points 702, 705.5, 717 and 724.5)
appear in this section. Repeated strokes, however, become recurrent units later in the
piece.

22B[537 : 549] is identical to B[182 : 187], but twice as slow.
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Except for point B1[807], all displaced points in layer B are delta-time
displacements. These altered and non-compensated ISI occur at time-point
pairs (825, 829.5), (829.5, 833.5), (844, 848), (851.5, 854.5), (854.5, 859),
(876.5, 880.5), (884, 888), (898.5, 902.5), (913, 917) and (927.5, 931.5). What
motivates these displacements? The purpose of the displacements of points
on layers A and C might have been the avoidance of concurrent strokes (si-
multaneities) between layers. Stroke A[824.5] is strange, however, because
while it avoids a collision with a stroke on layer B, it causes a collision with
a stroke on layer C. On layer B, only some displaced points seem to be
motivated by collision avoidance. These are at time-points 807, 848, 854.4
and 862.5. All other displacements seem to happen “spontaneously”. Note
that by maintaining a strict 3.5 m/s in B[790 : 935], only five strokes would
collide with strokes in the other layers. i.e. only five displacements on layer
B would be needed to avoid collisions, half of the displacements that are
actually found in the score. So, in addition to the displacements for the
purpose of collision avoidance, Xenakis may have also wanted jitter in the
B layer sequence. This added jitter is something that appears at various
places in the score.

2.5 Sublayer C3

Sublayer C3 plays an interesting role in the piece. It appears first at tick
519 as a point of arrival from what might be described as the winding down
of a failing machine that opened the piece in layer B. At time-point 747.5
C3 becomes part of multi-sequence C[747.5 : 984], which is in turn part
of the canonic structure described above. From 1000 to 2160, sublayer C3

carries out a completely autonomous fuzzy pulsation process. In the range
[1000 : 1905], this fuzzy pulsation carries a relatively constant period of
20 m/s. The actual mean period is 21.047 m/s, with a variance of 4.126
m/s. This is the longest continuous process in the piece and it spans four
sections (sections 4, 5, 6 and 7). At tick 1905, the pulsation gradually
accelerates until it reaches a constant 1 m/s in tick 2160. Starting at tick
1727 (beginning of section 7), however, there is an interesting asymmetric
doubling of the period. i.e., the pulsation period is split in two asymmetric
halves. This asymmetric period is continued until the end of the acceleration
at tick 2160 (see Figure 14).

2.6 Section 4 [990 : 1410]

Section 4 begins quite suddenly with what might be called a “resonance
interlude”. The range [990 : 1202] is the sparsest of the whole piece. It is
comprised of the opening strokes of the fuzzy pulsation process in sublayer
C3 and a regular pulsation of 30 m/s in sublayer B2. This sparsity pulls our
attention towards the decay of sound and the resonance of the space.
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Figure 14: Fuzzy pulsation sequence C3[1000 : 2396]. The plot shows two
graphs, the original sequence C3[1000 : 2396] and the same sequence with
period-splitting strokes removed.
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This whole section seems to be composed of two distinct processes: one is
the long fuzzy pulsation process in sublayer C3 that starts in this section (see
Section 2.5). The other process is like a multi-layer expansion of a quasi-A1-
like processes, similar to the two-layer expansion of a B-like process found in
section 2, layers B and C. Here, the layers involved are A, B, D and E. Layers
D and E, two of the three metal layers, first appear in this section. Layer
D is introduced at 1238.5 and E at 1321. While very distinct in timbre, the
two layers appear to belong together with layers A, B and D in the same
process.

This multi-layer process has it peculiarities. Consecutive strokes do
sometimes fall on the same sublayer. This breaks property 2 of A1-like
sequences. The other two properties are fairly well maintained. Exceptions
to property 1 (strict mono-stoke configurations) appear at ticks 1323.5, 1342,
1346.5, 1352, 1392, 1402, 1405.5 and 1407. Those sequences satisfying prop-
erties 1 and 3 of A1-like sequences I shall refer to as A2-like.

Strokes on sublayer A1 almost always appear in groups of repeated
strokes with a rate of 2 s/m. These repeated strokes, which we just got
a glimpse of at the end of Section 2 [702 : 726], now become quite present.
This “stuttering” element is more prominent in sublayer A1, but it also
“infects” sublayers 1 and 3 of layers B and D, as well as layer E. Their
appearance is modest at the beginning of the section, but they gradually
become more present as the section progresses.

The repeated strokes on sublayer A1 seem to be coupled with the fuzzy
pulsation process; repeated strokes in A1 fall immediately before, immedi-
ately after, or around the strokes on sublayer C3, but never simultaneously:
sublayer A1 “knows” about the fuzzy pulsation in C3. At the same time,
these strokes on sublayer A1 alternate with the strokes in the other layers,
suggesting that they belong together. Thus, while the fuzzy pulsation pro-
cess is independent, this other multi-layer process seems to be somewhat
coupled with it.

This multi-layer process also displays two mildly gradual transitions.
One is the progressive elimination of silence breaking up the continuity of
the sound. The other is the progressive move from clean A2-like sequences
(range [1203 : 1237]) to a sequence of relatively long stretches of repeated
strokes on the same sublayer.

2.7 Section 5 [1411 : 1589]

Section 5 has three independent simultaneous sequences. One is the fuzzy
pulsation sequence that comes from section 4 and continues into section 6.
The other two are A2-like monophonic sequences, each spanning two layers
(AB and DE) and each running at a different rate: one at 1 s/m, the other
at 2 s/m. In the range [1411 : 1538], sequence AB runs at 1 s/m and DE
at 2 s/m. At tick 1539, the speeds are exchanged: sequence AB runs at 2
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s/m and DE at 1 s/m.

Glitches The A2-like sequences on layer groups AB and DE have some
interesting “anomalies” that call our attention. All the strokes in AB[1411 :
1538] fall on a tick, except one: the stroke expected at tick 1478 seems to
have been delayed by 1/2 measure, falling at time-point 1478.5. In both
AB[1411 : 1538] and DE[1411 : 1538], almost every time-point has at most
one stroke (i.e., no more than one sublayer is sounding at a given time). In
DE[1411 : 1538] there are three instances where this is not the case. At time-
points 1423.5 and 1463.5 we find two simultaneous strokes in two sublayers.
In both cases there is a gap half a measure later: an empty time-point where
we expect a stroke for the continuity of 1/2 m/s to be maintained. It seems,
again, as if strokes had been displaced from their expected places, creating a
glitch in an otherwise constant pulse. In sequence AB[1539 : 1589] we find
two more instances of this at time-points 1557 and 1583.5. Again we find
that the strokes seem to have been anticipated by half a measure, creating
simultaneities at 1557 and 1583.5 and gaps at 1557.5 and 1584. In DE[1488]
there is another pair of simultaneous strokes, although this time not followed
by a gap. Here, the extra stroke seems to have been simply added. The
same thing occurs at AB[1418], AB[1426] and DE[1586]. Where do these
“glitches” come from? Why are they there? They are relatively few and not
very perceptually salient; yet, they are too frequent to be accidental...

2.7.1 DE[1411 : 1538]

There are 8 distinct stroke configurations in sequence DE[1411 : 1538].
The simultaneities at time-points 1423.5, 1463 and 1488 are unique and
statistically negligible so we remove them from the alphabet,23 leaving us
with the following 5 letters:

While we have decided to remove these letters from the alphabet, it is still
not clear how we should handle them in the sequence. The fact that they
seem like “anomalous” temporal displacements suggests that instead of elim-
inating them we should simply move one of the coinciding points so that
both the simultaneities and the time-gaps are “fixed” in one move. Hav-
ing done this we are left with only two time-points with no strokes in the
whole sequence, making them also quite negligible. Removing these silent
time-points from the alphabet leaves us with only four letters:

23Remember that the larger the alphabet size, the longer the sequence must be to extract
from it meaningful statistics.
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From this new “clean” sequence we compute the generating ε-machine.
DE[1411 : 1538] is 255 tokens long, so the trust boundary is very close
to Ltb = 4 given our new alphabet or cardinality 4 (44 = 256).24 As can
be seen in Figure 15, the predictability gain for DE[1411 : 1538] starts to
grow at L = 3 and peaks at L = 5. Because Ltb = 4 we cannot know if
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Figure 15: “Cleaned” DE[1411 : 1538] entropy measurements.

the gain at L = 5 is due to insufficient data or if it’s a true attribute of
the process. Using a significance level of 0.1 and Lmax = 4, we obtain the
ε-machine shown in Figure 16.

2.7.2 AB[1411 : 1538]

If we take every time-point as a valid configuration, then sequence AB[1411 :
1538] has 9 letters in its alphabet. For an alphabet this big, AB[1411 : 1538]
is too short (128 points) to extract from it any meaningful statistics. Thus,
the two only instances of simultaneities in AB[1411 : 1538] at 1418 and

24The soft statistical trust boundary is actually 4.0137.
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Figure 16: ε-machine reconstructed from DE[1411 : 1538] with parameters
Lmax = 4, α = 0.1.

1426 we take as negligible and eliminate them from the sequence and the
alphabet, leaving us with the following 7 letters:

The computed ε-machine is shown in Figure 18.

2.7.3 AB[1539 : 1589]

As we did with sequence DE[1411 : 1538], we modify the statistically negli-
gible time-point configurations in the sequence in order to obtain a reduced
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Figure 17: “Cleaned” AB[1411 : 1538] entropy measurements.
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Figure 18: ε-machine reconstruction of AB[1411 : 1538]. Parameters:
Lmax = 3, α = 0.1.

alphabet. The three points we modify are the simultaneities followed by
a rest at [1557 : 1557.5] and [1583.5 : 1584], and the rests at 1562. For
the first two, we displace one of the simultaneous points by half a mea-
sure. This simultaneously covers the empty spaces and makes the sequence
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strictly monophonic. The emtpy time-point at 1562 we simply remove. The
resulting alphabet is:

As can be seen in Figure 19, the maximum predictability gain is at L =
2. This is fortunate, since the trust boundary for a sequence of length 95
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Figure 19: “Cleaned” AB[1539 : 1589] entropy measurements.

and alphabet cardinality 6 is just Ltb = 2. The ε-machine recovered from
AB[1539 : 1589] is shown in Figure 20.

2.7.4 DE[1539 : 1589]

Except for the last strokes at tick 187, this short sequences is strictly mono-
phonic. For the ε-machine reconstruction, we remove the last token from the
sequence. This leaves us with an alphabet of cardinality 4. Figure 21 plots
the entropy measures of the sequence and its sublayer sequences; Figure 22
shows the recovered ε-machine.
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Figure 20: ε-machine reconstruction of AB[1539 : 1589]. Parameters:
Lmax = 3, α = 0.1.

2.8 Section 6 [1590 : 1720]

In this section, Xenakis introduces a new kind of sequence characterized by
pairs of sequential strokes. The two strokes in these pair units are always
one measure apart, and one of the two strokes is always accented while the
other is not. This twin-strokes sequence spans 384 measures, from tick 1614
to tick 1998. Of the 24 twin-strokes total, 20 fall on sublayer B3, three
fall closely together on sublayer D3 ([1715 : 1724]) and one, at tick 1897,
on sublayer D1. Notice that the thee stroke pairs in D3[1715 : 1724] are
very close to each other (3 measures apart) compared to the stroke pairs in
sublayer B3. This fact and the collision at tick 1719 suggests that the two
sequences belong to separate, albeit identical, processes.

In addition to this new twin-strokes sequence and the fuzzy pulsation
continuing its way towards the end of the piece, the section also contains
what appears to be a multi-layer A2-like process very much like the one
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Figure 21: “Cleaned” DE[1539 : 1589] entropy measurements.
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Figure 22: ε-machine reconstruction of DE[1539 : 1589]. Parameters:
Lmax = 3, α = 0.1.

found in section 4. Again, we find the repeated strokes on sublayer A1

falling exactly around the strokes of the fuzzy pulsation in sublayer C3.
The layers involved in this multi-layered process are A, B2, D and E. Short
sequences of strokes again alternate with silence. Notice that the strokes of
the three processes (the fuzzy pulsation with its halo of A1 repeated strokes,
the twin-strokes and the multi-layer A2-like process) never coincide, but are
arranged in a strictly sequential stream, a single stroke at a time.

2.9 Section 7 [1720 : 2175]

This section sees the continuation of two independent processes: the fuzzy
pulsation and the twin-stroke process that began in the previous section.
This twin-stroke sequence thins out towards the end of the section, appearing
for the last time at tick 1998. The fuzzy pulsation, however, moves into the
perceptual foreground. It is in this section that it doubles its density (tick
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1734.5) by asymmetrically inserting one more stroke per period, and where
it accelerates until reaching a rate of 1 s/m (see Section 2.5).

Arborescent pulsations A third, new kind of “texture” dominates this
section. The little “tutter virus” that was introduced at the end of Section
2 has here taken over. Layers A, B, D and E all serve as the canvas for
what could be described as a gradually evolving arborescent contour25 filled
in with regular machine-gun-like repeated strokes. The texture is slightly
reminiscent of the arborescences found in Evryali (1973), written two years
before Psappha. These “machine-guns” fire at constant rate of 2 s/m until
tick 2023, where the rate is doubled (or tripled) via tremolo indications (the
score reads: “2 or 3 strokes per point”26). Notice that strokes in the different
sublayers overlap, sometimes for more than 3 measures. The distribution of
these “machine-gun” sequences is broad and irregular at the beginning of
the section ([1748 : 1820]) but it gradually narrows and branches, ending in
two oscillating and accelerating streams on layers A and D ([2130 : 2173]).

Deriving a stochastic model from this multi-sequence is a challenge with
the methods we’ve been employing. The two problems are the large alphabet
of the sequence relative to its length, and the very clear and gradual trend
that the sequence has. Such a trend implies a large amount of memory
but, given the length of the sequence relative to its alphabet size, there
is no way of reaching that length before hitting the trust boundary. The
actual number of stroke configurations found in the sequence is 50,27 but the
sequence is only 850 time-points long. 502 = 2500, so the trust boundary Ltb
for this arborescent sequence is only 1. Thus, another approach is needed.

2.10 Section 8 [2176 : 2397]

The final section comprises two streams. One is the continuation of the
constant 1 m/s pulse in sublayer C3. The other is a retrograde presentation
of a segment of the long A[380 : 518] sequence. After a short 6 measure
return of the cyclic sequence A[47.5 : 60] at tick 2266, Xenakis finishes the
piece with an almost exact retrograde of A[400 : 518]. The only difference is
a three stroke gap in the range [2285.5 : 2286.5]. This time, however, these
sequences appear in layer F, making this the first and only appearance of
the layer in the whole piece.

Xenakis breaks the monotony of the constant 1 m/s sequence in sublayer
C3 by accenting some of the strokes in the sequence. All the IAIs (Inter
Attack Intervals) belong to the Fibonacci series. From tick 2176 to tick 2265

25In [12], Harvey describes arborescences as “. . . proliferations of melodic lines created
from a generative contour”.

26“2 ou 3 coups par point”
27Although the 10 sublayers composing this sequence/texture imply a potential 210 =

1024 alphabet size.
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we find that only the first four numbers of the series are used: {1, 2, 3, 5}.
From 2255 to the end of the piece, the accents follow the series exactly,
starting from 2 and ending on 55: 2, 3, 5, 8, 13, 21, 34, 55.

3 Closing Remarks

As noted in the preamble, Xenakis’ interest in composing Psappha was in
the “architecture” of pure, abstract, rhythm. He was interested in the struc-
tural relationships between the sound tokens, not in the sound tokens them-
selves.28 In keeping with this line of thought, I have here presented a purely
structural analysis, focusing on the relationships between the strokes and
the way these outline the different rhythmic patterns.

I have dissected Psappha while simultaneously attempting to partially
resuscitate it by deriving localized stochastic models, in the form of ε-
machines, from the fragments obtained. These models pertain mostly to
local sequences. With the exception of the meta-process discussed in sec-
tion 2, I made no attempt to derive a model of process interactions or a
global model for the whole piece. Further, I did not attempt to model all
the local stroke sequences. In particular, the arborescent sequence of section
7 poses a special challenge. In general, the main difficulty in deriving these
models is the estimation of probability measures from relatively little data.
The insatiable hunger for data that these models have makes them hard to
estimate from sequences that are short relative to their alphabet size. There
is an alternative to the standard ε-machine models we have used here; rather
than taking the arborescent contours as a single multi-dimensional sequence
from which to derive a global model, we could consider them as spatio-
temporal evolutions, like cellular automata. From this perspective, instead
of deriving a single global model from a high dimensional sequence, multiple
local models can be computed from purely local interactions. Shalizi[20] pro-
posed a particularly interesting approach to this problem using the notion
of “light cones” to define the space of interactions, and he applies this tech-
nique precisely to cellular automata. At any rate, it seems clear that when
confronted with non-periodic or semi-periodic sequences, global ε-machines
can provide a more compact representation with more relevant parametric
handles than sieves do.

28To what extent did Le Corbusier influence Xenakis’ aesthetic?: “[...] architecture
which is everything—but is not the “decorative arts.” Tail pieces and garlands, exquisite
ovals where triangular doves preen themselves or one another, boudoirs embellished with
“pours” in gold and black velvet, are now no more than the intolerable witnesses to a
dead spirit. These sanctuaries stifling with elegancies, or on the other hand with the
follies of “Peasant Art,” are an offence.[p.91] Art is an austere thing which has its sacred
moments. We profane them. A frivolous art leers upon a world which has need rather
of organization, of implements and of methods and which is pushing forward in travail
towards the establishment of a new order.[p.100][5]
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In the process of analyzing and modeling Psappha, a couple of funda-
mental structural patterns and procedures have become manifest. Some are
obvious but nevertheless important and worth mentioning:

1. Parallel vs. sequential arrangement. Two elements (sequences) can
be arranged in sequence or in parallel (simultaneously). Elements
arranged in parallel can be composed as independent sequences or
as a single multidimensional sequence (i.e., the vertical configurations
between two or more simultaneous sequences may be accounted for or
not.). The former we call layering, the later, braiding ; B[0 : 39] is an
example of braiding. The relationships between parallel sequences can,
however, have multiple degrees of interdependence (coupling). Thus,
there is a continuous spectrum between total independence and total
coupling between parallel sequences.

2. Modulation. A process modulates another process (or a set of pro-
cesses) if the first governs a parameter of the second.

3. Continuous vs. discontinuous. Generally speaking, change can occur
gradually (continuously) or abruptly (discontinuously). Examples of
continuous change: the fuzzy pulsation process, the gradual perceptual
merging of alternating processes by increasing the frequency of alterna-
tion between processes, and the gradual slowing down in B[200 : 519].
Example of discontinuous changes: the alternating entrances of stroke
sequences in A[0 : 519].

4. Repetition. Repetition can occur at various scales and levels of ab-
straction, i.e., at the level of sequences (verbatim repetition) and at
the level of processes. e.g., Section 8 is a kind of coda that ends the
piece with a reversed restatement of material appearing early in the
piece.

5. (Time) scaling : e.g., the poli-tempi canon in section 3.

From a purely formal/structural perspective, time scale seems like a sec-
ondary issue. But the impact this has on perception cannot be ignored (or
minimized) given the enormous qualitative variations one can experience
from the exact same sequence rendered at different speeds. The contin-
uum rhythm-pitch observed by several composers ([9, 22]) is a most obvious
acknowledgment of this. In the score, Xenakis uses a wide range of time
scales. Pertaining ISIs specifically, we find a proportion of approximately
97 : 1 between the longest (the opening of section 4, with ISIs of 20 mea-
sures at a tempo of > 110MM approximately) and the shortest (the strokes
with tremoli in section 8 (assuming 2 strokes per point) with a tempo of
> 134MM) ISIs.



Xenakis’ Psappha (this is a DRAFT) 40
A

1

A
1

A
1

A
1

A
1

A
1

A
1

A
1

A
2

A
2

A
2

A
2

A
2

A
2

A
2

A
2

A
3

A
3

A
3

A
3

A
3

A
3

A
3

A
3

B
1

B
1

B
1

B
1

B
1

B
1

B
1

B
1

B
2

B
2

B
2

B
2

B
2

B
2

B
2

B
2

B
3

B
3

B
3

B
3

B
3

B
3

B
3

B
3

C
1

C
1

C
1

C
1

C
1

C
1

C
1

C
1

C
2

C
2

C
2

C
2

C
2

C
2

C
2

C
2

C
3

C
3

C
3

C
3

C
3

C
3

C
3

C
3

D
1

D
1

D
1

D
1

D
1

D
1

D
1

D
1

D
2

D
2

D
2

D
2

D
2

D
2

D
2

D
2

D
3

D
3

D
3

D
3

D
3

D
3

D
3

D
3

E E E E E E E EF
1

F
1

F
1

F
1

F
1

F
1

F
1

F
1

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
2

F
3

F
3

F
3

F
3

F
3

F
3

F
3

F
3

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

41
0

42
0

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

84
0

85
0

86
0

87
0

88
0

89
0

90
0

91
0

92
0

93
0

94
0

95
0

96
0

97
0

98
0

99
0

10
00

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
80

10
90

11
00

11
10

11
20

11
30

11
40

11
50

11
60

11
70

11
80

11
90

12
00

12
10

12
20

12
30

12
40

12
50

12
60

12
70

12
80

12
90

13
00

13
10

13
20

13
30

13
40

13
50

13
60

13
70

13
80

13
90

14
00

14
10

14
20

14
30

14
40

14
50

14
60

14
70

14
80

14
90

15
00

15
10

15
20

15
30

15
40

15
50

15
60

15
70

15
80

15
90

16
00

16
10

16
20

16
30

16
40

16
50

16
60

16
70

16
80

16
90

17
00

17
10

17
20

17
30

17
40

17
50

17
60

17
70

17
80

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

19
20

19
30

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

20
20

20
30

20
40

20
50

20
60

20
70

20
80

20
90

21
00

21
10

21
20

21
30

21
40

21
50

21
60

21
70

21
80

21
90

22
00

22
10

22
20

22
30

22
40

22
50

22
60

22
70

22
80

22
90

23
00

23
10

23
20

23
30

23
40

23
50

23
60

23
70

23
80

23
90

F
ig

u
re

23
:

B
ar

e
bo

ne
sc

or
e

of
P

sa
pp

ha
.

T
he

sc
or

e
sh

ow
s

al
lt

he
st

ro
ke

s
fo

un
d

in
th

e
or

ig
in

al
.

H
er

e,
ho

w
ev

er
,n

o
ac

ce
nt

s,
dy

na
m

ic
m

ar
ki

ng
s,

or
te

m
po

in
di

ca
ti

on
s

ar
e

sh
ow

n.
T

he
ti

m
e-

gr
id

ha
s

al
so

be
en

re
m

ov
ed

fo
r

cl
ar

it
y.

In
st

ea
d,

ti
ck

m
ar

ks
ab

ov
e

ea
ch

sy
st

em
ar

e
dr

aw
n

at
th

e
ti

m
e-

po
in

ts
w

he
re

th
er

e
is

at
le

as
t

on
e

st
ro

ke
.



Xenakis’ Psappha (this is a DRAFT) 41

A Glossary

configuration a particular combination of strokes and non-strokes on dif-
ferent sublayers, at a single time-point.

IAI Inter Accent Interval.
ISI Inter Stroke Interval.
layer a stratum in Psappha indicated with upper case letters. e.g. A, B,

etc.
m/s measures per stroke.
measure the time interval spanned by two consecutive ticks.
multi-sequence in Psappha specifically, a succession of stroke configura-

tions ranging more than one sublayer.
sequence in Psappha specifically, a succession of strokes on a single sub-

layer.
s/m strokes per measure.
stream segregation the perceptual grouping and separation of stimuli to

form coherent mental representations of the sensorial stream.[2]
sub-layer an instrumental sub-stratum in Psappha indicated by a number

1, 2, or 3, forming part of a layer.
tatum the greatest common divisior of all durations in the score. In Psap-

pha this is one quarter or a third (depending on the subdivision taken
at measure 2023) of a tick (with the notable exception of the quintuplet
found at measure 70).

tick a vertical line demarkating the boundaries of a measure.
time-point a time “slot”, multiple of the tatum, that can be occupied by

a stroke.

B Notation

∪,∩ set theoretic union and intersection.
∨,∧,⊕ logical OR, AND and XOR (exclusive OR).

rc(m, r) a residue class with modulo m and residue r.
mr in the context of sieves, a residue class rc(m, r).

P(a) the probability of a.
P(a|b) the probability of a given that we know b.

[a : b] a range of numbers between a and b, inclusive on both ends.
X[a : b] a multi-sequence (layer sequence) segment in the range [a : b].

Xn[a : b] a sublayer sequence segment in the range [a : b].

|A| cardinality of alphabet A
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C Residue Classes

Two integers c and r are said to be congruent modulo m if there exists an
integer q such that c = qm + r. This is written c ≡ r (mod m). The set
of all integers c congruent r modulo m is called a residue class modulo m,
here denoted rc(m, r).

Definition 1 (Residue class).

rc(m, r) = {x ∈ Z : x = qm+ r}

Example. The residue classes rc(12, i) for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
correspond to the pitch-class sets we all know and love. Pitch class 0
(C): rc(12, 0) = {. . . ,−12, 0, 12, 24, 36, . . .}, pitch class 1 (C]): rc(12, 1) =
{. . . ,−11, 1, 13, 25, 37, . . .}, etc.

D Xenakis Sieves

. . . every well-ordered set can be represented as points on a line,
if it is given a reference point for the origin and a length u for

the unit distance, and this is a sieve.[25]

There are a couple of ways in which one can formalize sieves. Xenakis’
discussion on sieves is set theoretic. In [24], he defines an elementary sieve
as a residue class, an equivalence relation of congruence modulo m (See
Appendix C). In his various texts, Xenakis uses different kinds of notation
to represent a residue class. In [24], he notates mr, the modulo subscripted
with the residue, while in [25] he uses the tuple notation (m, r). Here we
will also use rc(m, r) to make the residue class more explicit. A residue class
(or elementary sieve) is thus an infinite sequence with its difference always
equal to a constant m, the modulo of the residue class. Thus all basic sieves
are periodic with period m.

A complex sieve is defined by an expression that combines multiple el-
ementary sieves, or residue classes, via set operators like union (∪) , in-
tersection (∩) and complementation (superscript c). Also important is the
operation of exclusive disjunction (⊕); Xenakis, however, never makes use
of it.

Example (union). The union of rc(2, 0) and rc(3, 0):

rc(2, 0) ∪ rc(3, 0) = [. . . ,−2, 0, 2, 4, 6, 8, . . .] ∪ [. . .− 3, 0, 3, 6, 9, . . .]
= [. . . ,−3,−2, 0, 2, 3, 4, 6, 8, 9, . . .]

Example (intersection).

rc(2, 0) ∩ rc(3, 0) = [. . . ,−6, 0, 6, 12, 18, . . .]
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Example (exclusive disjunction).

rc(2, 0)⊕ rc(3, 0) = [. . . ,−2, 2, 3, 4, 8, 9, 10, . . .]

Xenakis’ sieves can also be thought of as a boolean analogue of the
Fourier transform in the sense that a complex sequence of values can be de-
composed into a collection of simple, periodic functions, each with a different
period and/or phase. Inversely, a complex sequence can be constructed from
a combination of simple basis.

Let’s define a function δ : N → {0, 1} to be an elementary sieve basis
function:

Definition 2 (Sieve basis function).

δrm[n] ,

{
1, if n ≡ r (mod m)
0, otherwise.

To make the distinction between sets of residue classes and these boolean
sequences, we shall use the standard boolean operators when dealing with δ
functions. The above examples would then be expressed as as:

δ02 [n] ∨ δ03 [n] = [. . . , 1, 0, 1, 1, 1, 0, . . .]

δ02 [n] ∧ δ03 [n] = [. . . , 1, 0, 0, 0, 0, 0, . . .]

δ02 [n]⊕ δ03 [n] = [. . . , 0, 0, 1, 1, 1, 0, . . .]

In his 1990 Sieves article[25], Xenakis discusses both the construction of
complex sequences by the combination of elementary sieves and the inverse
transformation: the decomposition of a complex sequence into simple sieves.
The algorithm he presents might be call a XOR decomposition because the
basis δ functions obtained from the decomposition are mutually exclusive
(the intersection of their corresponding residue classes yields the empty set)
and thus can be XORed to obtain the original complex sequence. For exam-
ple, the sequence [1, 0, 1, 1, 1, 0, . . .] would be decomposed into the two basis
δ02 [n] and δ36 [n]: [1, 0, 1, 0, 1, 0, . . .] ⊕ [0, 0, 0, 1, 0, 0, . . .]. Jones[14] considers
this XOR decomposition to be “flawed” in part because the basis resulting
from the decomposition are orthogonal.29 This is not a bad thing per se of
course, but one might indeed want the decomposition of [1, 0, 1, 1, 1, 0, . . .]
to yield rc(2, 0) and rc(3, 0). This we call an OR decomposition because
the δ basis obtained can be ORed together to recover the original complex
sieve.

29In [14], Jones proposes an alternative algorithm for sieve decomposition that offers a
compromise between exactness and compact representation. It is a lossy OR decomposi-
tion that reconstructs an approximation to a complex sieve by combining the extracted
basis via the OR operator.
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Definition 3 (Normalized δ correlation). Given a boolean sequence s, for
a period p and a phase (or index) i, with p a divisor of len(s) and 0 ≤ i < p

〈s[n], δip[n]〉 ,
1∑len(s)−1

n=0 δip[n]

len(s)−1∑
n=0

s[n]δip[n] (1)

Definition 4 (δ spectrum).

S[p, i] , 〈s[n], δip[n]〉 (2)

Example. Compute the δ spectrum of s = δ02 [n] ∨ δ03 [n] = [1, 0, 1, 1, 1, 0].

p
1 0.6 0 0 0 0 0
2 1 0.3 0 0 0 0
3 1 0.5 0.5 0 0 0
6 1 0 1 1 1 0

0 1 2 3 4 5 i

(3)

Notice in the table that periods 4 and 5 are skipped because 4 and 5 are not
divisors of 6.

E Information Theory

The most fundamental notions in information theory are those of informa-
tion and entropy. Let X be a random variable taking the possible values x
from the finite alphabet X . We write P(x) to denote the probability of X
taking value x.

Definition 5. The Shannon entropy of X:

H[X] , −
∑
x∈X

P(x) log2 P(x) (4)

Definition 6. The total Shannon entropy [7]30 of length-L subsequence
blocks, for L > 0:

H(L) , −
∑

sL∈AL

P(sL) log2 P(sL), (5)

Definition 7. The mutual information between two random variables X
and Y :

I[X;Y ] , H[X]−H[X|Y ] (6)
= H[Y ]−H[Y |X] (7)
= H[X] +H[Y ]−H[X,Y ] (8)
= H[X,Y ]−H[X|Y ]−H[Y |X] (9)

30In [7], Crutchfield and Feldman present a very clear and thorough exposition of various
information theoretic measures; highly recommended.
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It is non-negative and zero when X and Y are independent.

Definition 8. The mutual information distance between X and Y :

d(X,Y ) , H[X,Y ]− I[X;Y ] (10)

Definition 9. The relative mutual information distance[15]:

D(X,Y ) ,
d(X,Y )
H[X,Y ]

(11)

= 1− I[X;Y ]
H[X,Y ]

(12)

The normalized distance D(X,Y ) is useful in comparing the mutual in-
formation between probability distributions derived from varying length-L
sequence blocks by keeping all distances between 0 and 1 always.

Computing Probability Distributions

Estimating accurate probability distributions from limited amounts of data
is a non-trivial problem. Because probabilities form the basis of many mea-
surements in information theory (most notably entropy), a good amount of
literature is devoted to the problem of estimating probabilities from finite
data and new approaches are still being proposed (e.g., [4][13]).

The simplest way of estimating probabilities is by counting the relative
frequencies of all possible outcomes. Given a sequence s of length N with
letters from an alphabet A, we compute the marginal probability of each
letter in the alphabet by counting the number of times each letter appears
in s and dividing by the total number of letters:

P(a) =
count(a)

N
(13)

All probability estimates in this analysis are computed in this way.

Statistical Trust Boundary

The entropy of a process depends on two things: the probability distribu-
tion, as is clear from the definition, and the cardinality |A| of the alphabet
A (or AL for length-L subsequences with letters taken from A). The maxi-
mum entropy value that a process with an alphabet of size |A| can have is
log2(|A|), and it is reached when the probability distribution over the alpha-
bet is uniform. i.e., when all symbols in the alphabet are equally probable.
This implies that out of two processes with identical probability distribu-
tions, the one with the larger alphabet will have the greater entropy. This
in turn means that, for any given process, H(L) must be a monotonically
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increasing function. i.e., H(L) ≤ H(L+1) always. But when deriving prob-
abilities statistically from finite data we find that, past a certain length value
Ltb, the probability estimates computed with the simple counting method
described above begin to “narrow”, so to speak, and become less and less
reliable due to the reduction in the number of data points to count. As can
bee seen in Figure 24, after a certain length L the rate of growth of the
entropy H(L) function begins to drop, to the point where the entropy gain
turns negative. This contradicts the fact that H(L) ≤ H(L + 1) always.
Here, H(L) is not monotonically increasing because the number of words
found in the sequence begins to decrease as L increases; at L = N , there is
just one word (the whole sequence) and the entropy is 0: H(N) = 0. The
boundary length Ltb at which the entropy gain drops due to the finite length
of the sequence and not due to the inherent properties of the sequence, we
call the statistical trust boundary.

Definition 10 (Hard statistical trust boundary ). Let S be a sequence of
random variables of length N with elements taken from alphabet A:

Ltb = blog2(N)/ log2(|A|)c

Ltb tells us what the longest word length (subsequence length) in a sequence
S is for which it is still possible to find at least one of each of the |ALtb |
words in alphabet ALtb .

Example. Let s be a binary sequence of length N = 140, with alphabet
A = {0, 1}. There are 2 possible words of length L = 1, 4 possible words of
length L = 2 (22), 8 possible words of length L = 3 (23), etc. In this case,
the maximum word length Ltb for which there could possibly be at least one
of each of the words of length Ltb of smaller in the sequence, is 7: 27 = 128.
Eight is too long: 28 = 256 > N = 140. This is what the hard statistical
trust boundary tels us:

Ltb = blog2(140)/ log2(2)c
= b7.129/1.0c
= 7

The statistical trust boundary defined above is a hard boundary. This
boundary can be relaxed if one considers that some of the letters in the
alphabet may actually be quite rare. log2(|A|) can be replaced with the
entropy of the process:

Definition 11 (Soft statistical trust boundary ). Let S be a sequence of
random variables with length N .

Lstb = blog2(N)/H(S)c
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Figure 24: Entropy estimates for five sequences of length N = 100, gener-
ated from the same random process, with alphabet A = {0, 1} and probabil-
ity distribution P(0) = 0.9, P(1) = 0.1. The hard statistical trust boundary
is at 6, the soft statistical trust boundary at 13.

Example. Suppose we have a sequence of length 100 generated from a process
with alphabet A = {0, 1, 2}, and a probability distribution P(0) = 0.9,
P(1) = 0.05, P(2) = 0.05. With the given distribution, letters 1 and 2 will
together appear only 10% of the time, while letter 0 will appear 90% of the
time. It seems reasonable to believe that, in this case, the trust boundary
should be larger than 4 (34 = 81) since the subsequences will be composed
mostly of just the letter 0. The soft statistical trust boundary of such a
sequence is thus 10 (see Figure 25).

Figures 24 and 25 shows typical H(L) curves for a random sequences
of finite length. Each figure depicts five curves corresponding to a different
trial of the same random process. Both the hard and soft statistical trust
boundaries are shown.

F Computational Mechanics

Here we review the basics of computational mechanics needed to understand
the stochastic models (in the form of ε-machines) computed in this analysis.
While information theory is concerned mainly with measuring and encoding
information, computational mechanics is concerned with how information is
processed and how structure can be quantified.

Some notation: S is a sequence of random variables S =
. . . , Si−1, Si, Si+1, . . .. Si is the ith random variable of the sequence. si
is the actual value returned by Si.

−→
Si
L is the sequence Si, Si+1, . . . , Si+L−1

of L random variables.
←−
Si
L is the sequence Si−L, . . . , Si−2, Si−1 of L random

variables immediately preceding Si.
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Figure 25: Entropy estimates for five sequences of length N = 100, gener-
ated from the same random process, with alphabet A = {0, 1, 2} and proba-
bility distribution P(0) = 0.9, P(1) = 0.05, P(2) = 0.05. The hard statistical
trust boundary is at 4, the soft statistical trust boundary at 10.

Given a sequence of values s = s1, s2, s3, . . ., is it possible to find a pat-
tern that can explain and compactly represent s? What causes s2 to follow
s1? What causes s3 to follow s1, s2? Inversely, having seen s1, s2, s3, what
will s4 most likely be? Or, better yet, what is the distribution of futures
given s1, s2, s3? The probably obvious but important implication of the
statement “having seen. . . ” is the requirement of memory. If we had no
memory about the immediate past we would have difficulties predicting the
future. Of course, the more we remember the better our estimate of the
future will be. . . one would think. But this is not always true. Sometimes
retaining more information about the past does not give us a better predic-
tion about the future. In a simple memoryless random process, such as the
toss of a coin, no amount of memorizing past trials will give us a better esti-
mate about the future than a simple guess. So given a particular sequence,
how much of it must we remember in order to make the best possible pre-
diction? More specifically, given a particular past sequence ←−s what is the
most likely future −→s ? Or better yet, what is the probability distribution of
futures P(−→s |←−s ) for an observed sequence←−s ? How can we go about finding
the minimum memory required for maximal prediction?

From a statistical point of view, we might do the following: Given a se-
quence←−s of length N , first find the alphabet A of the sequence. Then count
how many times each letter appears in the sequence. From the estimate of
the relative frequencies of the letters in the alphabet we can make a first
informed prediction. Obviously we would predict that the most frequent is
the most likely to come next. Can we improve our prediction by keeping
track of the past subsequences of length L = 1,←−s 1? Count how many times
each letter in A is followed by every other letter. If we can better predict
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the future with this new calculation , then we continue to L = 2 and so on
until our prediction can no longer be improved or until we have reached a
predefined maximum length limit Lmax. Note that what we are computing
is the probability distribution of the alphabet conditioned on each possible
past subsequence ←−s L of length L. i.e., P(a|←−s L), ∀ a ∈ A. In the case of
L = 1, we have k conditional probability distributions because there are k
letters in the alphabet. For L = 2 we could potentially have k2 distinct
probability distributions and so on. Some of these distributions, however,
could be the same, or practically the same. Thus, it makes sense to group
together all subsequences←−s L having the same conditional distribution of fu-
tures, and to treat them as equivalent given that they have the same “shape”
and predictive power. i.e., there is no need to distinguish between different
past sequences that give us the exact same information about the future.
Doing so would simply add more memory requirements without giving us
any added predictive power.[10] At the end of the analysis, having reached
an Lmax, we end up with a collection Σ of sets σ of sequences ←−s L grouped
together because they share the same probability distribution of futures.

What we have just done is effectively partitioned the space of all past
subsequences ←−s L on the basis of their probability distribution of futures.
This set Σ gives us an interesting first characterization of the process that
might have generated the sequence observed. The next stage is to see how
these σ sets relate to each other; i.e., how they connect and how the process
jumps from one set to the next.

ε-machines

What is an ε-machine? An ε-machine is a computational model recon-
structed from some data stream.

Definition 12 (ε-machine). An ε-machine of a process is the pair {Σ,T},
where Σ is the set of causal states, and T is the set of labeled transition
matrices T (s)

ij . ε-machines can be visualized as graphs, where vertices (nodes)
are the causal states, and the edges are the labeled transition probabilities.

Definition 13 (Causal State). The causal states of a process are the equiv-
alence classes σi induced by the equivalence relation ∼ε defined as:

←−si ∼ε ←−sj iff P(−→s |←−si ) = P(−→s |←−sj ) + δ ∀−→s ,

where δ is a tolerance. We write σi the ith causal state Σ the set of all
causal states and S the corresponding random variable.31

Each causal state has the following attributes:
31A couple of equivalent definitions have been given by different authors. See, for

example, [20] and [10].
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1. An index i, or “name”.
2. A set of histories {←−s ∈ σi}.
3. A conditional distribution over futures: P(

−→
S |σi) = P(

−→
S |←−s ),←−s ∈ σi,

called the morph[8].

The morph is the probability distribution of futures of a given causal state
σ. Subsequences ←−si are grouped together in the same causal state precisely
because they share the same morph.

Definition 14 (Causal Transitions). The labeled transition probability T (s)
ij

is the probability of making the stransition from state σi to state σj while
emitting the symbol (letter) s ∈ A:

T
(s)
ij , P(S ′ = σj ,

−→
S 1 = s|S = σi),

where S is the current causal state and S ′ its successor. T is then the set
{T (s)

ij : s ∈ A}.[20]

ε-machine reconstruction

The “intuitive” algorithm described above is a very rough analogue of the
first stage in the ε-machine reconstruction algorithm proposed by Crutchfield
and Young.[6] The actual computation of the ε-machines derived in this
paper are performed with an algorithm proposed by Shalizi in [20] and [21]
and implemented by Klinkner and Shalizi. The ε-machine reconstruction
algorithm tries to infer the minimal Markovian model capable of generating
a given sequence. It begins by assuming that the sequence to be analyzed
comes from a simple memoryless random process having a single causal state.
i.e., it assumes the simplest possible process as point of departure for the
reconstruction. Broadly, the algorithm is as follows:32

1. Homogeneity. Compute the causal states whose member “words” (sub-
sequences) have the same morph.

(a) For each σ̂ ∈ Σ, compute its morph:

i. For each sequence ←−s L ∈ σ̂, compute its morph.
ii. Average the morphs of the sequences in σ̂ to obtain the morph

of σ̂.

(b) For each σ̂ ∈ Σ, test the null hypothesis.33

(c) Find the causal state of suffix sequence a←−s L with length L + 1,
for each length L subsequence ←−s L ∈ σ̂ and each a ∈ A.

32Please refer to [21] for a detailed definition, explanation and discussion.
33All the ε-machine reconstructions computed in this paper use the Kolmogorov-Smirnov

test to evaluate the goodness-of-fit of the probability distributions derived from the data.
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i. Compute the morph of a←−s L.
ii. See if this morph matches the morph of a previously obtained

state.
iii. If it does, add it to the matching state, otherwise create a

new state and add the sequence a←−s L to it.

2. Determinization. We now compute the state transitions to connect the
states, and we make sure every member (subsequence) of each state
σ̂i has the same successor state for the same symbol a ∈ A. i.e., we
determinize them.

For each state σ̂ ∈ Σ:

(a) For each a ∈ A:

i. For all ←−s ∈ σ̂ find the successor state on a. i.e., Find the
state σ̂′ that has the same morph as ←−s a, for all ←−s .

ii. If there is only one successor state on a, go to the next a.
iii. If there are n ≥ 2 successor states on a, create n − 1 new

states and move histories from σ̂ to the new states so that
each state has the same successor on a.

(b) If every history ←−s ∈ σ̂ has the same successor on a, for every a,
go to the next state.
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