
Discrete Time 1-bit Music: foundations
and models

by

Vı́ctor Adán a

M.S., Massachusetts Institute of Technology (2005)

Submitted to the Music Department,
Graduate School of Arts and Sciences,

in partial fulfillment of the requirements for the degree of

Doctor of Musical Arts

at

Columbia University

May, 2010

c©Vı́ctor Adán 2010, All rights reserved.

aA citizen of MexiCorp, a wholly-owned subsidiary of USA Inc.

Discrete Time 1-bit Music: foundations and
models

by Vı́ctor Adán

Submitted to the Music Department,
Graduate School of Arts and Sciences, on May 2010,

in partial fulfillment of the requirements
for the degree of Doctor of Musical Arts

Abstract
This paper covers the theoretical bases of 1-bit music composition. Boolean
algebra is introduced as the foundation of 1-bit music. Several models
of 1-bit sequences are presented: deterministic models in the form of
phasors and Xenakis sieves, and stochastic models in the form of finite
state machines.
Music composition patterns (sequential and parallel composition, 1-bit
counterpoint, modulation, hierarchies) are discussed within the context
of 1-bit music.
Three common waveforms for encoding and transmitting 1-bit sequences
(line codes) are reviewed and compared.
The paper concludes with a brief description of a series of pieces created
with the models and tools presented.

Table of Contents

1 Introduction and Background 1
1.1 Inspiration and Motivation 1
1.2 Musical Representation 2

1.2.1 PCM (Pulse Code Modulation) 2
1.3 What is Discrete-time 1-bit Music? 3

2 1-bit Signals 5
2.1 Pulse Code Modulation Waveforms 5
2.2 The Subharmonic Series 7

3 Symbolic 1-bit Sequences 9
3.1 Boolean algebra . 10

3.1.1 Boolean Vectors 12

4 1-bit Sequence Models 15
4.1 Boolean Impulses . 15
4.2 Boolean Cycles . 15
4.3 Boolean Phasors . 17
4.4 Xenakis Sieves . 18

4.4.1 Analysis . 21
4.5 Non-periodicity and Randomness 24

4.5.1 Computational Mechanics 28
4.5.2 ε-machines . 30

5 1-bit Composition 33
5.1 Parallel and Sequential Composition 33

5.1.1 Parallel (simultaneous) Perceptual Streams 36
5.2 Modulation and Phasors 38
5.3 Hierarchic stochastic finite state machines 39
5.4 Fonoptera and the Tepozchiquilichtli Studies 40

Appendix A Notation 49

Appendix B 1-bit Instrument Construction 51

i

Bibliography 57

ii

Acknowledgments

My thanks go to those who made this work, and all the work leading to
it during my stay at Columbia University, possible.
Thank you to those professors with whom I studied and who supported
me: Brad Garton, Fred Lerdahl, Fabien Levy, George Lewis, Tristan
Murail, and Douglas Repetto.
Thank you to my CMC colleagues and collaborators Jeff Snyder, Daniel
Iglesia and Sam Pluta for their inspiring work and feedback.
Special thanks go to Douglas Repetto for so generously sharing his time,
knowledge and personal tools with me. My 1-bit instruments would not
have happened without his help.
Last but not least, I thank Alejandra for her vast reserves of patience in
dealing with the sometimes not so happy me.

iii

1

CHAPTER ONE

Introduction and Background

1.1 Inspiration and Motivation

In 2002, Julio Estrada and I presented a paper and demonstration at the
International Symposium on Musical Acoustics, held in Mexico City, on
our implementation in MúSIIC-Win 3.2 (Música: Sistema Interactivo
de Investicación y Composición) of Estrada’s work on the combinatorial
potential of scales and their application in the realm of time in the form
of a wave shape generator.[6] In MúSIIC-Win 3.2, periodic wave shapes
are constructed by partitioning a period into E equidistant segments and
either assigning or not assigning an impulse to each segment. Essentially,
all the compositions of E (in the mathematical sense)1 are computed and
rendered as a pulse wave for one to hear. The frequency of these periodic
pulse waves can be changed in real time, so that one can audibly explore
the relationship between the combinatorial arrangement of pulses within
a cycle and the resulting timbre or rhythmic pattern.

Soon after, in 2004, while working at the MIT Media Lab, Noah Vawter
aka “shifty” showed me his 1-bit microchip electronic instrument. I was
not surprised by the sound, but I was struck by the clarity with which I
could hear several concurrent streams. A couple of years later I decided
to compose a 1-bit piece of music to see how far I could go with the most
limited musical instrument conceivable.2 How much music can one make
with a 1-bit instrument?

1A composition of a positive integer n is tuple a = (a1, a2, . . . , am) such that
a1 +a2 + . . .+am = n. i.e., it’s an expression of n as a sum of strictly positive integers
in which order matters. e.g., 5, 4 + 1 and 1 + 4 are all different compositions of 5.

2While exploring the use of dot matrix printers as 1-bit instruments and sharing
my interest with other composers, I was made aware of the unique work of Tristan
Perich, another composer doing a lot of 1-bit music. His music has since also been a
source of inspiration.

2 CHAPTER 1. INTRODUCTION AND BACKGROUND

1.2 Musical Representation

Humans have been encoding sound for thousands of years. The spoken
word in the form of phonetic writing and the various systems of music
notation are two broad examples. These systems were developed to
represent a specific family of sounds (subsets of the universe of sounds)
and to serve specific purposes.

Later came audio recording technology. By imprinting the atmospheric
pressure changes on a variety of media, humans were now able to capture
any arbitrary sound.3 In Thomas Alva Edison’s early phonographs, for
example, the air pressure changes were mechanically recorded on tinfoil
sheets wrapped around a grooved cylinder. Then came magnetic record-
ings; instead of making physical imprints, magnetic recorders converted
the pressure changes into an analogous magnetic field along a moving
tape. With the advent of digital technology, audio recording went back
to the method of symbolic representation of the early days, with the no-
table difference that this time any sound could be encoded numerically.

1.2.1 PCM (Pulse Code Modulation)

The most common digital audio representation scheme used today is
pulse-code modulations (PCM). PCM is a digital representation of quan-
tized pulse-amplitude modulation (PAM).[14] In quantized PAM a sig-
nal is represented as a sequence of pulses of varying magnitudes that
are equidistantly spaced over time (Figure 1-1). In sound recordings,
these magnitude values are approximations of the atmospheric pressure
changes registered by a microphone at regular time intervals. The ac-
curacy of the approximation depends on the number of possible values
available to represent each magnitude. This is typically given in bits
(binary digits). In a 16-bit encoding (currently the standard for CDs)
there are 216 = 65536 values available for each magnitude, in an 8-bit
encoding there are 28 = 256, in a 4-bit encoding there are 24 = 16, with
2 bits there are 22 = 4 values and with 1 bit there are 21 = 2 values.
The more bits used the more accurate the approximation of a continu-
ous phenomenon such as air pressure changes. The smaller the encoding
alphabet, the more inaccurate and distorted the representation will be.

3It is quite amazing that the multi-layered complexity that we hear in music can all
be found embedded in the one dimensional signal which is the changing atmospheric
pressure, and that it can all be captured by such a simple device as a microphone.

1.3. WHAT IS DISCRETE-TIME 1-BIT MUSIC? 3

0 5 10 15 20 25
time

20

15

10

5

0

5

10

15

20
m

ag
ni

tu
de

Figure 1-1: Quantized PAM representation of one cycle of a sine wave.

Once the magnitudes are measured, they are encoded numerically in
binary form.

To reconstruct the PCM encoded sound, the reverse operation is per-
formed. The symbolic binary words representing the evolving magni-
tudes are converted back into a physical reality by regenerating an elec-
trical signal that varies in relation to these magnitudes. This discrete
signal is then smoothed with a high-pass filter to obtain a continuously
varying signal.

1.3 What is Discrete-time 1-bit Music?

In 1-bit music there are only two “words” in the musical alphabet. i.e.,
at any given instant there is one and only one of two events: ‘0’ or ‘1’.
Thus, the set of all possible events available at any given instant can be
represented with just one bit.

In addition, two time-points or events can not be arbitrarily close to each
other. i.e., there is a minimum time interval T = ∆t between events.
This smallest time interval is called the tatum (time atom) and all time
intervals are integer multiples of it.

One of the most interesting things about 1-bit music composition is that
one is directly confronted with the problem of creating pitches, timbres
and polyphony (parallel perceptual streams), all from a single train of
pulses. With only two symbols (0 and 1) there is no “vertical” informa-
tion, no subtlety in the degree of push and pull. Thus, in the confines of

4 CHAPTER 1. INTRODUCTION AND BACKGROUND

a 1-bit music, one is forced to use time to convey all information; time
is the only carrier of information. i.e., everything must be created from
rhythm.4 Rhythm is the sine qua non of music.

4In music, and from a psychoacoustic perspective, rhythm is usually contrasted
with pitch, the first referring to our perception of events that happen at a rate of less
than 20 Hz, approximately, and the later to those events that happen at a rate greater
than 20 Hz. Rhythm is here understood in a more general sense as the distribution
of events over time, regardless of speed.

5

CHAPTER TWO

1-bit Signals

2.1 Pulse Code Modulation Waveforms

As introduced in the previous chapter, PCM is a way of encoding sound
into a binary representation. In order to hear the recording, the binary
encoding is converted back into a smooth continuous signal to recover
the originally continuous air pressure changes. 1-bit music is, however,
by definition, a discrete two state universe. How then, should a 1-bit
sequence be converted into a physical reality? Certainly, the physical
signal generated from a binary sequence must also be subject to the
bounds of the 1-bit world. Strictly, a 1-bit sequence (10101010 · · ·) would
cease to be 1-bit if it were interpolated and transmitted as a continuous
signal (Figure 2-1). A 1-bit waveform describing electrical or mechani-

Figure 2-1: A 1-bit sequence (10101010 · · ·) rendered as a continuous wave-
form.

cal variations should, ideally, have but two states, just like the abstract
1-bit sequences. Idealized pulse waves with just two amplitudes (a max-
imum and a minimum) satisfy this requirement. A pulse wave used to
carry binary digits (e.g., through electrical wire) is called a pulse-code
modulation waveform (PCM waveform). A variety of PCM waveforms

6 CHAPTER 2. 1-BIT SIGNALS

(also called line codes) exist. Figure 2-2 shows three commonly used line
codes: NRZ-L, NRZ-M and Unipolar RZ.[14]

NRZ-L

NRZ-M

Unipolar RZ

1 0 1 1 0 0 0 1 1 0 1

0 T 2T 3T · · ·

Figure 2-2: Three PCM waveforms commonly used to transmit binary data.

In NRZ-L (Nonreturn-to-zero Level), 1 is represented as a high voltage
level and a 0 is represented as a low voltage level. In NRZ-M (Nonreturn-
to-zero Mark), 1 (the mark) is represented as a change in voltage level,
0 is represented by no change in level. In Unipolar RZ (Return-to-zero),
1 is represented as a short high voltage pulse, 0 is represented by the
absence of a pulse. In Unipolar RZ, the duration of the pulse carries
no information and varies depending on the application (naturally it is
always a fraction of T). Its purpose can be simply to make the pulse
detectable by a receiver or to provide enough power to drive an electrical
device.

In NRZ-M and Unipolar RZ, 1 is encoded as an onset. In NRZ-M, a
change in voltage occurs every time there is a 1 and only when there is
a 1. In Unipolar RZ a pulse is triggered every time there is a 1 and only
in the presence of a 1. In NRZ-L, a change of voltage occurs only when
there is a change of value. Thus, in NRZ-L a sequence (1111 · · ·) will
yield a constant high value · · · , while NRZ-M yields · · · and
Unipolar RZ yields · · · .

All three codes will sound differently when sent to a speaker. If 1 is
assumed to be the onset of a perceivable event (like a percussion attack)
then line codes such as NRZ-M or Unipolar RZ are used.

In 1-bit music, the PCM waveform is not just a digital transmission
scheme, it is, in a sense, the music; it is what we actually hear when the
wave —in the form of voltage variations— is sent directly to a speaker
to be converted into sound pressure changes.

2.2. THE SUBHARMONIC SERIES 7

2.2 The Subharmonic Series

Not every frequency can be perfectly reproduced in the world of discrete
time 1-bit music. Since the tatum is the smallest possible time interval
between two consecutive impulses, the highest frequency that can be re-
produced in such a system is 1

T for a Unipolar RZ PCM waveform and 1
2T

for NRZ. Because all time intervals must be multiples of the tatum, the
next highest frequency possible is 1

2T for Unipolar RZ and 1
4T for NRZ.

All other possible frequencies follow logically: 1
nT , for n ∈ N∗. Thus, the

frequencies that can be reproduced within the confines of discrete time
1-bit music are those of the subharmonic series: {1/1, 1/2, 1/3, 1/4, · · · }.
The higher the frequency range, the smaller the set of available frequen-
cies. Between 1

T and 1
2T (the range of an octave, in pitch parlance)

inclusive, there are two available frequencies: 1
T and 1

2T . Between 1
2T

and 1
4T (again a ratio of 1:2) there are three. Between 1

4T and 1
8T there

are five, and so on. In general, between 1
n and 1

2n , inclusive, there are
n+ 1 available frequencies:

20+1︷ ︸︸ ︷
(1, 2),

21+1︷ ︸︸ ︷
(2, 3, 4),

22+1︷ ︸︸ ︷
(4, 5, 6, 7, 8),

23+1︷ ︸︸ ︷
(8, 9, 10, 11, 12, 13, 14, 15, 16), · · ·

Further, since the timbre is determined by the pulse pattern of the cycle
(in the case of periodic sounds with a fixed frequency > 20 Hz), and the
shorter the period, the smaller the set of available cycle patterns (see
Section 4.2), the higher the frequency the smaller the set of available
timbres.

In what remains of this paper I will discuss only the symbolic dimension
of 1-bit music.

8 CHAPTER 2. 1-BIT SIGNALS

9

CHAPTER THREE

Symbolic 1-bit Sequences

Mixing digital audio involves simple numeric addition. When two 16-bit
signals (byte vectors) a and b are mixed, their values corresponding to
the same time index n are added (a[n] + b[n]), resulting in a new value
c[n] = a[n] + b[n].

Example. If a = (1, 2, 3, 4) and b = (1, 0, 1, 0), then

a+ b = (1, 2, 3, 4) + (1, 0, 1, 0) = (2, 2, 4, 4).

The finite alphabet of 216 words limits the result of the sum to 65536−1.
If the sum of two or more values exceeds this limit, the result is “clipped”
and set to 216 − 1.1

How does mixing work in 1-bit music? 1+1 = 2 is not an option because
the alphabet of 1-bit music comprises only the two words 1 and 0, so 1+1

must result in either 1 or 0. Assuming 1 represents a perceivable event
and 0 the absence of a perceivable event, we might want 1+1 = 1. What
should x+ y yield for the other three possible arrangements of 1 and 0?
To maintain consistency with arithmetic addition, we might define our
1-bit + as follows:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

1This is the famous “clipping” digital distortion.

10 CHAPTER 3. SYMBOLIC 1-BIT SEQUENCES

The definition of a binary operator (in this case +) as an exhaustive
listing of all possible assignments of 1 and 0 to operands x and y, together
with their corresponding outputs is called the truth table of the operator.

Clearly, this is one of many ways in which the operator could have been
defined. This exercise begs the question of what other binary operators
might be defined that could be useful in 1-bit music composition. Since
we are dealing with a set of only two values, 1 and 0, we can actually write
out and enumerate all 24 possible “interactions” between two variables
x and y, with x, y ∈ {1, 0}. Table 3.1 shows all 16 possible outputs for
the four possible arrangements of the two letters 1 and 0. Note that

x y Truth Tables

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3.1: All 24 possible ways of defining binary operations between the
two values 1 and 0.

the 8th column corresponds to our definition of +. Fifteen other binary
operations are laid out in the table. Could any of those also be useful
in a 1-bit music toolbox? Are the sixteen truth tables related in any
“logical” way?

These questions point to the more general problem of defining some form
of two-valued algebraic system. Naturally, this work has already been
done by several people, most notably George Boole in his 1854 book
An Investigation of the Laws of Thought [2]. In the book, Boole sets
the foundations for what is now called Boolean Algebra: the algebra of
thought, logic, classes, digital circuits and. . . 1-bit music.

3.1 Boolean algebra

In general, an algebra is composed of a set A and a collection of operators
that act on A.[8] Boolean algebra is the algebra of two values. In 1-bit
music only two values are needed, so I will stick to the prototypical
boolean set A = {1, 0}. The operators acting on this set can be defined

3.1. BOOLEAN ALGEBRA 11

axiomatically from the truth tables in Table 3.1. Because we still don’t
have a name or symbol for each of the sixteen definable binary operators,
I will refer to them by number as op(i), where i is the number of the
corresponding truth table found in Table 3.1. The provisional definition
of + given above would then be written as

0 op(8) 0 = 0

0 op(8) 1 = 1

1 op(8) 0 = 1

1 op(8) 1 = 1

Note that some of the truth tables are of no use as binary operators.
The first (definition of op(1)) and last (definition of op(16)) are simply
0 and 1 respectively; no matter what the values for x and y are, these
two will always return the same constant. Truth table 4 is always x
and truth table 6 is always y. i.e., x op(4) y = x and x op(6) y = y.
Notice that the truth tables are inversely mirrored at the center of their
arrangement in Table 3.1, so that the last truth table is the inverse of
the first, the next-to-last is the inverse of the second, and so on. From
this observation we can define a handy unary operator ‘¬’ called the
“complement” or “negation”. Thus, ¬1 = 0 and ¬0 = 1. In general,
x op(i) y = ¬(x op(16 + 1 − i) y) for 1 ≤ i ≤ 16. This means that half
of the operators can be defined in terms of the other via negation. This
also implies that if op(i) is a dispensable binary operator (in the sense
that only one or none of the two inputs x and y defines the output) so
is op(16 + 1 − i) . Removing the four dispensable truth tables we are
left with ten useful binary operators, but since one half can be defined
in terms of the other via negation, we are left with, what at this point
appears to be, five axiomatic binary operators. Table 3.2 again shows
all the truth tables for all possible binary operators, this time with the
standard symbols used for the six most commonly defined operators.

Within the six standard symbols that appear in Table 3.2 there exists
only one mirroring correspondence via ¬: that between ⊕ and ≡. Thus,
one can be defined in terms of the other: x ≡ y = ¬(x⊕ y). This leaves
us with five axiomatic binary operators and one unary operator. But
the set can further be reduced. The standard axiomatic definition of the
boolean operators takes ∧, ∨ and ¬ (AND, OR and NOT, respectively)

12 CHAPTER 3. SYMBOLIC 1-BIT SEQUENCES

x y Truth Tables

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

∧ ⊕ ∨ ≡ ⇐ ⇒

Table 3.2: Of the 24 boolean binary operations available, four can be dis-
carded because their output is defined either only by one or none of the
values of the variables x and y. These are marked in gray. The symbols
under truth tables 2, 7, 8, 10, 12, 14 are the standard symbols associated
with each of those operators.

as the three basic operators from which all others are derived:2

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y)
x⇒ y = ¬(x ∧ ¬y)
x⇐ y = x ∨ ¬y

3.1.1 Boolean Vectors

Definition 1 (Boolean vector). A boolean vector x = (x1, x2, . . . , xm)
is a finite length tuple with xi ∈ {1, 0}, and m ∈ N∗ <∞.

The boolean algebra with set A = {0, 1} is called the prototypical
boolean algebra. More generally, however, a boolean algebra can be
applied to a variety of other sets with more than two elements. The
step from the set A = {0, 1} of two boolean values to the set A3 =
{(000), (001), (010), (011), (100), (101), (110), (111)}, for example, is triv-
ial. For the unary operator ¬, ¬x simply applies the negation to each
element of x.

Example. If x = (101), then ¬x = (010).

For binary operators, the operation is applied to bit pairs with corre-
sponding indexes. i.e., If x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym),

2As an exercise, the reader can verify that these equalities are true.

3.1. BOOLEAN ALGEBRA 13

then x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . xm ∧ ym). In this case, both vectors x
and y must have the same length.

Example. If x = (101), and y = (110), then x ∧ y = (100).

Definition 2 (Concatenation operator: |). For any two finite length
vectors x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn).

x | y = (x1, x2 . . . , xm, y1, y2, . . . , yn)

i.e., the concatenation operator combines two vectors of length n and m
into one vector of length n+m.

14 CHAPTER 3. SYMBOLIC 1-BIT SEQUENCES

15

CHAPTER FOUR

1-bit Sequence Models

4.1 Boolean Impulses

Definition 3 (Symbolic Impulse). A symbolic impulse is here defined
simply as a boolean True: 1.

Definition 4 (Null). A null is a boolean False: 0.

Definition 5 (Impulse train). An impulse train is a boolean vector. i.e.,
an ordered collection of impulses and/or nulls.

Definition 6 (Inter-impulse-interval). Let x = (x1, x2, . . . , xm) be an
impulse train with impulses at indexes i and k. An inter-impulse-interval
exists between impulses xi and xk iff there does not exist a j, with
i < j < k, such that xj is an impulse. The inter-impulse-interval between
impulses xi and xk is defined as the absolute value of the difference
between indexes i and k: | i− k |.

Definition 7 (Delta-impulse function). Given an impulse train x =
(x1, x2, . . . , xm), a delta-impulse function ∆(x) returns a tuple of all the
inter-impulse-intervals in x.

Example. Let x = (10010), then ∆(x) = (3, 2)∆. The subscript ∆ is
used to emphasize the fact that these are indeed inter-impulse-intervals.

4.2 Boolean Cycles

There are 2m possible arrangements of 1s and 0s for a boolean sequence
of length m. For m = 3, for example, the following 8 sequences are
possible: (000), (001), (010), (011), (100), (101), (110), (111). Some of
these are, however, not cyclically distinct. Taking each as a closed loop,
like a necklace, we find the following equivalences:

16 CHAPTER 4. 1-BIT SEQUENCE MODELS

(001) ∼� (010) ∼� (100)
(011) ∼� (101) ∼� (110)

More generally, using cycle notation, we have that: (a)(b)(c) = (abc) =
(acb). i.e., the identity permutation —the permutation that leaves all
elements in their original place— (a)(b)(c) is equivalent to the permuta-
tion (abc) —which maps a to b, b to c, and c to a— and the permutation
(acb) —which maps a to c, c to b, and b to a. (000) and (111) are unique.
Thus, there are four cyclically distinct boolean vectors of length three.
Removing the null sequence (000) from the set leaves us with only three
useful boolean cycles of length m = 3 (see Figure 4-1).

3 1,2 1,1,1

Figure 4-1: The only three distinct boolean cycles of length 3 with at least
one impulse.

Definition 8 (Boolean Cycle). A boolean cycle xp� = (x1, x2, . . . , xm)p�
is a boolean sequence of finite length m that has no beginning and no end.
It is a closed loop structure that can be indexed and traversed infinitely
in one direction or the other. The reference phase p sets the 0th index
position to the (p + 1)th element of the cycle. Thus, 0 ≤ p < len(x)
always. When absent, p is assumed to be 0.

Example. The cycle x0
� = (100)0

� = (· · · 100100 · · ·) has 1 at phase 0, 0

at phase 1 and 0 at phase 2. Using index notation, x0
�[0] = 1, x0

�[1] = 0

and x0
�[2] = 0. Indexes can go to infinity: x0

�[3] = 1, x0
�[4] = 0,

The element returned is the ((n+p) mod len(x))th element of the cycle.
For x1

� = (100)1
� = (· · · 001001 · · ·), x1

�[0] = 0, x1
�[1] = 0, x1

�[2] = 1,
x1

�[3] = 0 and so on. Since x0
� and x1

� are cyclically symmetric, we can
write x0

� ∼� x
1
�.

Definition 9 (Irreducible cycle). A boolean cycle xp� = (x1, x2, . . . , xm)p�
is an irreducible cycle iff for all q ∈ {1, 2, · · · , len(xp�)− 1}.

x0
� ≡ x

q
� 6= (· · · 111 · · ·)

Example. Let x0
� = (110110)0

�. x� is not an irreducible cycle because
x0

� ≡ x3
� = (111111). The cycle can be reduced to the length-three

4.3. BOOLEAN PHASORS 17

cycle y0
� = (110)0

�. y� is irreducible because y0
� ≡ y1

� = (100) and
y0

� ≡ y2
� = (010), none of which are (111).

4.3 Boolean Phasors

In composition it is generally useful and thus desirable to orthogonalize
parameters. In the domain of sound we separate pitch (the main per-
ceptual correlate of frequency) from timbre (highly determined by the
waveshape and relatively independent of pitch). Here we want to sepa-
rate the length of a cycle from the cyclical pattern itself. i.e., we want
to factor out the length of a cycle in order to draw equivalences across
cycles of different lengths.

Take the sets of boolean cycles with lengths 4 and 6, for example (see
Figures 4-2 and 4-3). Cycle (1000)� and (100000)� have different lengths
but the same inter-impulse-interval pattern: a single impulse. Thus, we
would want these to be equivalent: (1000)� ∼� (100000)�. In delta
notation (4)∆� ∼� (6)∆�. The cycles of (1010)� and (100100)� are
both symmetrically divided by two impulses in two equal halves. Thus,
(1010)� ∼� (100100)�, or equivalently (2, 2)∆� ∼� (3, 3)∆�. The equiv-
alence (1111)� ∼� (111111)� seems to be of a slightly different nature.
(111111)� has more impulses than (1111)�, but since the inter-impulse-
intervals are identical, there is no way to know from which of the two
cycles the sequence (· · · 1111 · · ·) might have come from. Thus, (1)� ∼�

(11)� ∼� (111 · · ·)�. Actually, all the cyclical patterns so far discussed
are equivalent since they can all be reduced to the cycle (1)� by inter-
impulse-interval scaling or reduction (i.e., by shortening a non-irreducible
cycle to its irreducible form.) Thus, (1)� ∼� (11)� ∼� (111 · · ·)� ∼�

(1010)� ∼� (101010 · · ·)� ∼� (100100)� ∼� (100100100 · · ·)� ∼�. . . .

4 1,3 2,2 1,1,2 1,1,1,1

Figure 4-2: All distinct boolean cycles of length 4, excluding the null cycle.

Clearly, all boolean cycles of length l will find an equivalence in the set
of boolean cycles of length nl, for n ∈ N∗.

18 CHAPTER 4. 1-BIT SEQUENCE MODELS

6 1,5 2,4 1,1,4 3,3 1,2,3 2,1,3 1,1,1,3

2,2,2 1,1,2,2 1,2,1,2 1,1,1,1,2 1,1,1,1,1,1

Figure 4-3: All distinct boolean cycles of length 6, excluding the null cycle.

Definition 10 (Boolean Phasor). A boolean cycle x� = (x1, x2, . . . , xm)�
is a boolean phasor1 xφ iff it satisfies the following properties:

1. x� is an irreducible cycle.

2. The inter-impulse-intervals of the cycle do not share a common
divisor other than one: GCD(∆(x�)) = 1. Equivalently, @ y� such
that n∆(y�) = ∆(x�), for any n ≥ 2.

Figure 4-4 shows all boolean phasors with cycle lengths 1, 3, 4, 5, 6 and
7. All boolean cycles of length 2 are redundant (included in the single
length 1 phasor) and thus absent. Note that the five boolean cycles of
length 4 reduce to two boolean phasors, and the thirteen boolean cycles
of length 6 reduce to seven phasors.

4.4 Xenakis Sieves

. . . every well-ordered set can be represented as points on a
line, if it is given a reference point for the origin and a

length u for the unit distance, and this is a sieve.[17]

There are a couple of equivalent ways in which sieves can be formalized.
Xenakis’ universe and point of departure is the set of integer numbers
Z. Using residue classes and combining them via set operators, Xenakis
constructs asymmetric subsets of Z.

1The name “phasor” is naturally suggested by the use of the word to refer to a
rotating vector represented as a complex exponential.

4.4. XENAKIS SIEVES 19

1

1,2

1,3 1,1,2

1,4 2,3 1,1,3 1,2,2 1,1,1,2

1,5 1,1,4 1,2,3 2,1,3 1,1,1,3 1,1,2,2 1,1,1,1,2

1,6 2,5 1,1,5 3,4 1,2,4 2,1,4 1,1,1,4 1,3,3

2,2,3 1,1,2,3 1,2,1,3 2,1,1,3 1,1,1,1,3 1,2,2,2 1,1,1,2,2 1,1,2,1,2

1,1,1,1,1,2

Figure 4-4: All boolean phasors with cycle lengths 1 through 7.

20 CHAPTER 4. 1-BIT SEQUENCE MODELS

In [16], Xenakis defines an elementary sieve as a residue class, an equiv-
alence relation of congruence modulo m.2

Definition 11 (Congruence modulo m). Two integers c and r are said to
be congruent modulo m if there exists an integer q such that c = qm+r.
This is written c ≡ r (mod m).

Definition 12 (Residue class). The set of all integers c congruent r
modulo m is called a residue class modulo m, here denoted rc(m, r).

rc(m, r) = {x ∈ Z : x = qm+ r}

Example. The residue classes rc(12, i) for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
correspond to the pitch class sets Western indoctrinated musicians know
and love. Pitch class 0 (C): rc(12, 0) = {· · · ,−12, 0, 12, 24, 36, · · · }; pitch
class 1 (C]): rc(12, 1) = {· · · ,−11, 1, 13, 25, 37, · · · }; etc.

Definition 13 (Complex Sieve). A complex sieve is a subset of Z that
can not be expressed as a single residue class and that must be expressed
as a combination of multiple elementary sieves via set operators like
union (∪), intersection (∩), complementation and exclusive disjunction
(⊕).3

Example (union). The union of rc(2, 0) and rc(3, 0):

rc(2, 0) ∪ rc(3, 0) = (· · · ,−2, 0, 2, 4, 6, 8, · · ·) ∪ (· · · − 3, 0, 3, 6, 9, · · ·)
= (· · · ,−3,−2, 0, 2, 3, 4, 6, 8, 9, · · ·)

Example (exclusive disjunction).

rc(2, 0)⊕ rc(3, 0) = (· · · ,−2, 2, 3, 4, 8, 9, 10, · · ·)

As abstract integer subsets, sieves can be applied to a variety of domains.
In particular, these integer subsets can be thought of as indexes to a
boolean vector, where all the values corresponding to these indexes are
1, and 0 otherwise.

2In his various texts, Xenakis uses different kinds of notation to represent a residue
class. In [16], he notates mr, the modulo subscripted with the residue, while in [17]
he uses the notation (m, r). Here I will use the notation rc(m, r) to make the residue
class more explicit.

3Xenakis appears to have never used the XOR (exclusive disjunction) operator.

4.4. XENAKIS SIEVES 21

Example. Considering only the positive integers, rc(2, 0) ∪ rc(3, 0) =
(0, 2, 3, 4, 6, 8, 9, · · ·). Converting this ordered set into a boolean vec-
tor x, where x[i] = 1 for i ∈ {0, 2, 3, 4, 6, 8, 9, · · · }, 0 otherwise, yields
(101110101110 · · ·).

This perspective moves us away from thinking about sieves in terms
of integer subsets and brings us closer to the world of boolean vectors
previously discussed.

4.4.1 Analysis

A parallel can be drawn between Fourier analysis and boolean represen-
tations of Xenakis sieves. Here too, a complex sequence can be decom-
posed into a collection of simple periodic functions, each with a different
period and/or phase. Inversely, and as we have already seen, a complex
sequence can be constructed from a combination of simple bases.

Definition 14 (Sieve basis function). A sieve basis function δ : Z →
{0, 1} maps a residue class rc(m, r) to a periodic boolean vector:

δrm[n] ,
{

1, if n ≡ r (mod m)
0, otherwise.

The notation δrm will be used when indexing is not required.

To emphasize the distinction between sets of residue classes and these
boolean sequences, I shall use the standard boolean operators when deal-
ing with δrm functions. The above examples would then be expressed as:

δ0
2 ∨ δ0

3 = (· · · 101110 · · ·)

δ0
2 ⊕ δ0

3 = (· · · 001110 · · ·)

In his 1990 Sieves article[17], Xenakis discusses both the construction
of complex sequences through the combination of elementary sieves and
the inverse transformation: the decomposition of a complex sequence
into elementary sieves. The algorithm he presents might be called a
XOR decomposition because the δrm functions obtained from the decom-
position are orthogonal (i.e., mutually exclusive since the intersection of
their corresponding residue classes yields the empty set) and thus can
be XORed to obtain the original complex sequence. For example, the
sequence (101110 · · ·) would be decomposed into the two bases δ0

2 and

22 CHAPTER 4. 1-BIT SEQUENCE MODELS

δ3
6 : (101010 · · ·) ⊕ (000100 · · ·). Jones[9] considers this XOR decompo-

sition to be “flawed” mainly because it excludes overlapping in favor of
orthogonality.4 This is not a bad thing per se of course, but one might
indeed want the decomposition of (101110 · · ·) to yield all the periodici-
ties found in the sequence, in this case δ0

2 and δ0
3 . This can be called an

OR decomposition because the δrm basis obtained can be ORed together
to recover the original complex sieve.

Just as the Fourier transform can decompose a signal into sinusoidal
functions by measuring the correlation between the sinusoidal basis and
the signal, so too the OR and XOR boolean decompositions express
a complex boolean sieve as a combination of elementary boolean basis
functions δrm.

The correlation between a boolean vector s and a sieve basis function
δrm is given by

〈s, δrm〉 =
1∑len(s)−1

n=0 δrm[n]

len(s)−1∑
n=0

s[n]δrm[n] (4.1)

Note that the boolean 1 values are here treated as numeric 1s to perform
the sum, and 0 as numeric zeros. Thus the correlation function maps
booleans to rationals. 〈s, δrm〉 tells us how much δrm correlates with s.
i.e., how much of δrm is in s. Notice that 〈s, δrm〉 is normalized, so 0 ≤
〈s, δrm〉 ≤ 1 always. When 〈s, δrm〉 = 1, the periodic delta function δrm
correlates perfectly with sequence s. When 〈s, δrm〉 = 0, s and δrm are
orthogonal, meaning that there is not a single index n for which both
function have a value 1.

All sieves, elementary or complex, are periodic. Thus s has a period N ,
which means that len(s) can be made to be mN . Then, the correlation

4In [9], Jones proposes an alternative algorithm for sieve decomposition that of-
fers a compromise between exactness and compact representation. It is a lossy OR
decomposition that reconstructs an approximation to a complex sieve by combining
the extracted basis via the OR operator.

4.4. XENAKIS SIEVES 23

function can be written as

〈s, δrm〉 =
m

mN

mN−1∑
n=0

s[n]δrm[n]

=
1
N

mN−1∑
n=0

s[n]δrm[n]

Further, since δrm is zero except when n ≡ r (mod m) then the equation
becomes

〈s, δrm〉 =
1
N

N−1∑
n=0

s[r + nm].

This boolean correlation analysis is akin to the periodicity transform
discussed by Sethares in [11]. In contrast to the Fourier transform, which
is a function of frequency, this transformation is a function of period m
and phase r.

Definition 15 (Fuzzy Sieve Spectrum). The spectrum of a boolean
vector s with period N is the set of all correlation values 〈s, δrm〉 for
every period m and phase r, such that 0 ≤ m ≤ N and 0 ≤ r < m, and
m is divisor of N .

Example. Compute the fuzzy sieve spectrum of s = δ0
2 ∨ δ0

3 = (101110).

m
1 4/6 0 0 0 0 0
2 1 1/3 0 0 0 0
3 1 1/2 1/2 0 0 0
6 1 0 1 1 1 0

0 1 2 3 4 5 r

Notice in the table that periods 4 and 5 are skipped because 4 and 5 are
not divisors of 6. Since 2 and 3 are divisors of 6, and for these moduli
there exists a phase r = 0 such that S[2, 0] = S[3, 0] = 1, then indeed s
is decomposable into δ0

2 ∨ δ0
3 .

The fuzzy sieve spectrum tells us how much each basis function correlates
with a given sequence. If we are only interested in perfect correlation
(the 1s in the table above) then the correlation function can be made
strictly boolean:

24 CHAPTER 4. 1-BIT SEQUENCE MODELS

Definition 16 ((Boolean) Sieve Spectrum). For all m divisor of N ,

〈s, δrm〉B =
N/m−1∧
n=0

s[r + nm]

Example. The sieve spectrum of s = δ0
2 ∨ δ0

3 = (101110):

m
1 0 0 0 0 0 0

2 1 0 0 0 0 0

3 1 0 0 0 0 0

6 1 0 1 1 1 0

0 1 2 3 4 5 r

4.5 Non-periodicity and Randomness

Periodic sequences of any length can be compactly represented with
sieves. Noise, however, is not periodic. In order to construct a boolean
vector that appears to be noise, several sieve bases must be combined.
Further, at most one cycle of the resulting expression can be used. Just
as the Fourier transform fails to provide a compact representation of
noise—in the sense that all coefficients for all frequencies within a given
bandwidth will be greater than zero—so too a sieve decomposition of a fi-
nite noisy sequence will result in an expression containing many non-zero
bases. As the length of the sequence tends to infinity, so will the number
of sieve bases necessary to reconstruct the sequence. Thus, sieves are not
the best tool for modeling boolean noise—at least in terms of compact
representation. Other models are better suited for non-periodic/non-
deterministic sequences.

To construct a random sequence of 1s and 0s one can simply toss a coin
as many times as necessary and record the output of each toss. If the
coin is fair, each of the two values 1 and 0 will be equally likely and
thus, at the long run, evenly distributed statistically speaking. We can,
however, purposely bend the coin in order to bias the distribution in
favor of one of the two possible outcomes. A coin is then a simple model
and generator of two value random sequences.

Definition 17 (Memoryless random sequence generator). A memoryless
random sequence generator (such as a coin or a die) is a pair {A,P(x)}

4.5. NON-PERIODICITY AND RANDOMNESS 25

where A is the alphabet or set of letters that can be returned by the
generator and P(x) is the probability function associated with the set.

Example. Let A = {1, 0} and P(1) = .25, P(0) = .75.5 For this generator
0 has three times the probability of being returned that 1. Thus, after
multiple iteration we will find that 1 is generated 25% of the time, while
0 is generated 75% of the time. The following sequence, for example,
was generated with these probabilities:

r = (1000000111100001000000000010000000001011 . . .)

Random processes like this are not only simple, they are also rather
uninteresting. Music changes; while a random sequence as the one above
is locally unpredictable, its global dynamics are static, or, to use the more
technical word, stationary.

In [3], Crutchfield proposed a curve like the one in figure 4-5 to describe
the statistical complexity of processes spanning the whole spectrum be-
tween simple periodic processes and complete randomness. The sieve

Figure 4-5: Crutchfield’s statistical complexity curve.

bases are simple periodic functions and thus fall on the extreme left.
The simple random generator given in Definition 17 is on the extreme
right. All interesting music is somewhere in between.

5Remember that one of the axioms of probability theory is that the sum of the
probabilities of all possible mutually exclusive events must add up to one, so P(1) +
P(0) = 1.

26 CHAPTER 4. 1-BIT SEQUENCE MODELS

In the world of Xenakis sieves, one moves from the extreme left of the
graph towards the middle by combining several sieve bases with the
boolean operators (∧,∨,⊕, ¬).

How does one move towards the middle from the right?

Consider the following two sequence fragments:

a = (1010010001010010100001010010100010010010 . . .)

b = (1011101011101110111110101010111010111010 . . .)

Sequence a is not as random as r. In a, 0 always follows 1. Sequence b
also displays a bit more structure. Notice that, starting from the first 1,
every other value is always 1:

b = (1011101011101110111110101010111010111010 . . .)

How can the structure of these sequences be characterized for classifica-
tion and comparison? How can the structure be quantified?

Sequence a shows a form of dependency of element i + 1 on element i.
What we can expect from the sequence at time i+1 depends to a certain
degree of what we have seen at time i; ai tells us something about what
ai+1 will be. i.e, the probability P(ai+1) depends on ai. More formally,
P(ai+1 | ai) ≥ P(ai+1). Specifically we see that P(ai+1 = 0 | ai = 1) = 1,
and P(ai+1 = 1 | ai = 1) = 0. Because the alphabet A consists of only
the two letters 1 and 0, these two probability measures define a complete
probability function conditioned on letter 1. i.e., the probabilities for all
the characters in the alphabet (1 and 0) are given and they add up to 1.

The next reasonable thing to do is to compute the probability distribu-
tion for the alphabet conditioned on the letter 0. The most straightfor-
ward way to do this is by simple count. How many instances of (0x)
for all x ∈ A = {0, 1} are there? There are 12 (00) words and 13 (01)
words out of a total of 25 length-2 words starting with 0 in sequence
a. Thus, we can estimate that P(0 | 0) = 12

25 and P(1 | 0) = 13
25 ; each

approximately 1
2 . Thus, P(0 | 0) = P(1 | 0) = 0.5.

It is clear then that in sequence a, the prospect of the future given
1 (P(x | 1)) is very different from the prospect of the future given 0

(P(x | 0)). We can think of these two probability functions as defining
two “spaces” or states, each having a different “shape of the future”. In

4.5. NON-PERIODICITY AND RANDOMNESS 27

the context of ε-machines (defined below), these probability functions
are called morphs. Figure 4-6 shows a graphical representation of this.

1 2

0 : 1

1 : 0.5
0 : 0.5

Figure 4-6: A graph representation of the random process generating se-
quence a. There are two states, each characterized by having a different
morph. State 1 always returns 0 with probability P(0) = 1.

Applying the same kind of statistical analysis on sequence b results in a
profile that is very similar to that of sequence a in terms of the estimated
probability functions; these are essentially the same, but flipped:

P(x | 1) =
{

15/28 ≈ 0.5, for x = 1

13/28 ≈ 0.5, for x = 0

P(x | 0) =
{

12/12 = 1, for x = 1

0/12 = 0, for x = 0

Sequence b is not, however, qualitatively equivalent to the negation of
a. As previously observed, b has a clear periodic component absent in
a. The difference between sequences a and b can be captured clearly in
the graphs of the processes. The strictly periodic quality of b is encoded
in the graph by connecting all outgoing edges of state 2 to state 1, thus
creating a regular cycle between the two recovered states. (Figure 4-7).
Interestingly, these graph structures can be automatically recovered from
the sequences via ε-machine reconstruction algorithms, one of which is
briefely described in section 4.5.2. While we are at it, notice that b
can also be modeled as a combination of a simple sieve δ0

2 and a simple
random memoryless process such as r: r ∨ δ0

2 .

What is the graph correspoding to sequence r? The process that gener-
ated it is, by definition, memoryless:

P(x) =
{
.25 for x = 1

.75 for x = 0

28 CHAPTER 4. 1-BIT SEQUENCE MODELS

1 2

1 : 1

1 : 0.5

0 : 0.5

Figure 4-7: A graph representation of the random process derived from
sequence b. The process is strictly periodic, which is reflected in the strict
alternation between states. State 1 always outputs 1, state 2 outputs 0 or
1 with equal probabilities.

There is one and only one morph that is constant and unconditional.
Thus, the process can be characterized as having a single state with a
single morph P(x). The graph of this process is depicted in Figure 4-8.

11 : 0.25 0 : 0.75

Figure 4-8: The graph structure of the memoryless random process r.

The graphs of a random process captures the amount of memory it uses
and, in a certain way, its complexity.6

4.5.1 Computational Mechanics

Given a sequence of values s = s1, s2, s3, . . ., is it possible to find a pattern
that can explain and compactly represent s? What causes s2 to follow
s1? What causes s3 to follow s1, s2? Inversely, having seen s1, s2, s3,
what will s4 most likely be? Or, better yet, what is the distribution of
futures given s1, s2, s3? The probably obvious but important implication
of the statement “having seen. . . ” is the requirement of memory. If we

6A discussion on complexity measures is beyond the scope of this paper. Nev-
ertheless, the reader is encouraged to review Crutchfield and friends’ work on the
topic ([5, 3, 4, 7, 13]). His statistical complexity offers a powerful (and computable!)
alternative to the (probably more popular) Kolmogorov-Chaitin complexity. In con-
trast to the Kolmogorov complexity, which is deterministic and thus maximal when
a sequence is random, Crutchfield’s statistical complexity is, well, statistical. Besides
being computable (and thus practically useful) it corresponds closely (or closer) with
our intutition of complexity; in statistical complexity measures, completely random
process have complexity 0 and are thus as simple as simple periodic processes. See
Figure 4-5.

4.5. NON-PERIODICITY AND RANDOMNESS 29

had no memory about the immediate past we would have difficulties
predicting the future. The more we remember, the better our estimate
of the future will be. . . or so one would think. But this is not always true.
Sometimes retaining more information about the past does not give us
a better prediction about the future. In a memoryless random process,
such as the toss of a coin, no amount of memorizing past trials will give
us a better estimate about the future than a simple guess. So given a
particular sequence, how much of it must we remember in order to make
the best possible prediction? How can we go about finding the minimum
memory required for maximal prediction?

From a statistical point of view, we might do the following: Given a
sequence←−s of length N , first find the alphabet A of the sequence. Then
count how many times each letter appears in the sequence. From the
estimate of the relative frequencies of the letters in the alphabet we can
make a first informed prediction. Obviously we would predict that the
most frequent is the most likely to come next. Can we improve our pre-
diction by keeping track of the past subsequences of length L = 1, ←−s 1?
Count how many times each letter in A is followed by every other let-
ter. If we can better predict the future with this new calculation , then
we continue to L = 2 and so on until our prediction can no longer be
improved or until we have reached a predefined maximum length limit
Lmax. Note that what we are computing is the probability distribution
of the alphabet conditioned on each possible past subsequence ←−s L of
length L. i.e., P(a|←−s L), ∀ a ∈ A. In the case of L = 1, we have k
conditional probability distributions because there are k letters in the
alphabet. For L = 2 we could potentially have k2 distinct probability
distributions and so on. Some of these distributions, however, could be
the same, or practically the same. Thus, it makes sense to group to-
gether all subsequences ←−s L having the same conditional distribution of
futures, and to treat them as equivalent given that they have the same
“shape” and predictive power. i.e., there is no need to distinguish be-
tween different past sequences that give us the exact same information
about the future. Doing so would simply add more memory require-
ments without giving us any added predictive power.[7] At the end of
the analysis, having reached an Lmax, we end up with a collection Σ of
sets σ of sequences ←−s L grouped together because they share the same
probability distribution of futures.

30 CHAPTER 4. 1-BIT SEQUENCE MODELS

What we have just done is effectively partitioned the space of all past
subsequences←−s L on the basis of their probability distribution of futures.
This set Σ gives us an interesting first characterization of the process that
might have generated the sequence observed. The next stage is to see
how these σ sets relate to each other; i.e., how they connect and how the
process jumps from one set to the next.

Some notation: S is a sequence of random variables S = . . . , Si−1, Si, Si+1,
Si is the ith random variable of the sequence. si is the actual value re-
turned by Si.

−→
Si
L is the sequence Si, Si+1, . . . , Si+L−1 of L random vari-

ables.
←−
Si
L is the sequence Si−L, . . . , Si−2, Si−1 of L random variables

immediately preceding Si.

Definition 18 (Stochastic Process). Let A be a countable set, Ω = AZ

be the set of sequences composed from A, and P the probability measure
associated with set Ω. A process is a sequence S of random variables Si
with values drawn from the set A.7

4.5.2 ε-machines

An ε-machine is a computational model reconstructed from some data
stream.

Definition 19 (ε-machine). An ε-machine of a process is the pair {Σ,T},
where Σ is the set of causal states, and T is the set of labeled transition
matrices T (s)

ij . ε-machines can be visualized as graphs, where vertices
(nodes) are the causal states, and the edges are the labeled transition
probabilities.

Definition 20 (Causal State). The causal states of a process are the
equivalence classes σi induced by the equivalence relation ∼ε defined as:

←−si ∼ε ←−sj iff P(−→s |←−si) = P(−→s |←−sj) + δ ∀−→s ,

where δ is a tolerance.[3] We write σi the ith causal state, Σ the set of
all causal states, and S the corresponding random variable.8

Each causal state has the following attributes:

7Refer to [12] for a more rigorous and complete definition.
8A couple of equivalent definitions have been given by different authors. See, for

example, [12] and [7].

4.5. NON-PERIODICITY AND RANDOMNESS 31

1. An index i, or “name”.
2. A set of histories {←−s ∈ σi}.
3. A conditional distribution over futures: P(

−→
S |σi) = P(

−→
S |←−s),←−s ∈

σi, called the morph[5].

The morph is the probability distribution of futures of a given causal
state σ. Subsequences ←−si are grouped together in the same causal state
precisely because they share the same morph.

Definition 21 (Causal Transitions). The labeled transition probability
T

(s)
ij is the probability of making the stransition from state σi to state
σj while emitting the symbol (letter) s ∈ A:

T
(s)
ij , P(S ′ = σj ,

−→
S 1 = s|S = σi),

where S is the current causal state and S ′ its successor. T is then the
set {T (s)

ij : s ∈ A}.[12]

ε-machine reconstruction

The “intuitive” algorithm described above is a rough analogue of the first
stage in the ε-machine reconstruction algorithm proposed by Crutchfield
and Young.[3] In [12] and [13], Shalizi proposed an improved algorithm
and an implementation. This ε-machine reconstruction algorithm tries
to infer the minimal Markovian model capable of generating a given
sequence. It begins by assuming that the sequence to be analyzed comes
from a simple memoryless random process having a single causal state.
i.e., it assumes the simplest possible process as point of departure for
the reconstruction. Broadly, the algorithm is as follows:9

1. Homogeneity. Compute the causal states whose member “words”
(subsequences) have the same morph.

(a) For each σ̂ ∈ Σ, compute its morph:

i. For each sequence ←−s L ∈ σ̂, compute its morph.
ii. Average the morphs of the sequences in σ̂ to obtain the

morph of σ̂.

9Please refer to [13] for a detailed definition, explanation and discussion.

32 CHAPTER 4. 1-BIT SEQUENCE MODELS

(b) For each σ̂ ∈ Σ, test the null hypothesis.Find the causal state
of suffix sequence a←−s L with length L + 1, for each length L
subsequence ←−s L ∈ σ̂ and each a ∈ A.

i. Compute the morph of a←−s L.
ii. See if this morph matches the morph of a previously ob-

tained state.
iii. If it does, add it to the matching state, otherwise create

a new state and add the sequence a←−s L to it.

2. Determinization. We now compute the state transitions to connect
the states, and we make sure every member (subsequence) of each
state σ̂i has the same successor state for the same symbol a ∈ A.
i.e., we determinize them.

For each state σ̂ ∈ Σ:

(a) For each a ∈ A:

i. For all←−s ∈ σ̂ find the successor state on a. i.e., Find the
state σ̂′ that has the same morph as ←−s a, for all ←−s .

ii. If there is only one successor state on a, go to the next a.
iii. If there are n ≥ 2 successor states on a, create n− 1 new

states and move histories from σ̂ to the new states so that
each state has the same successor on a.

(b) If every history ←−s ∈ σ̂ has the same successor on a, for every
a, go to the next state.

33

CHAPTER FIVE

1-bit Composition

To compose is to construct large “complex” perceptually non-trivial
structures from small simple parts.

5.1 Parallel and Sequential Composition

There are two basic ways in which two sequences x and y can be com-
posed: in parallel and in sequence.

In sequential composition, one sequence is placed before the other. Se-
quencing is achieved with the concatenation operator ‘|’. If x = (10010)
and y = (101010), for example, then x | y = (10010101010).

Parallel composition is a bit more interesting. In its simplest form, two
sequences x and y are composed in parallel when they are superimposed,
occurring simultaneously. i.e., they overlap in time. We can define a
parallel operator ‘‖’ that superimposes two or more sequences to compose
a set of parallel sequences.

Definition 22 (Parallel operator ‘‖’). Let x and y be either boolean
vectors or sets of boolean vectors. Then x ‖ y yields a set of boolean
vectors. If x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) are two boolean
vectors, then the composition of x and y via the ‖ operator yields an
unordered set z of vectors x and y:

z = x ‖ y =
∥∥∥∥(x1, x2, · · · , xm)

(y1, y2, · · · , ym)

∥∥∥∥ .

34 CHAPTER 5. 1-BIT COMPOSITION

If x = (x1, x2, . . . , xm) and z =
∥∥∥∥(a1, a2, · · · , am)

(b1, b2, · · · , bm)

∥∥∥∥ is a set of two boolean

vectors a and b, then the composition of x and z via the ‖ operator yields
the unordered set w of vectors x, a, and b:

w = x ‖ z =

∥∥∥∥∥∥
(x1, x2, · · · , xm)
(a1, a2, · · · , am)
(b1, b2, · · · , bm)

∥∥∥∥∥∥ .
Note that the vertical arrangement between vectors in z or w is imma-
terial, and is only used to visually suggest the simultaneity.

Another form of parallel composition is through combinations. We have
already encountered this form of parallel composition in the use of bi-
nary operators. The combination of two one-dimensional sequence x and
y via the binary operators ∨, ∧ and ⊕ is such a type of parallel com-
position. Note that superposition (via ‘‖’) and combination are quite
different in terms of the final structure. While combinations collapse
the combined sequences into a new one-dimensional sequence, ‘‖’ sim-
ply “runs them together”. This two-dimensional structure can be an
intermediate step for further processing before collapse, or it can be the
desired final structure. This will be the case when, for example, more
than one “instrument” plays simultaneously, each executing a different
row in the matrix.

Two one-dimensional elements x and y can be constructed independently
before a composition x ‖ y. Alternatively x and y can be conceived to-
gether as part of a single multidimensional entity z = x ‖ y in which the
vertical configurations between the elements of x and y are accounted for.
This is 1-bit counterpoint. In contrapuntal writing two or more concur-
rent streams are composed such that the vertical relations are considered
and thus coupled to some degree. The process of simply superimposing
two independent sequences with the ‘‖’ operator can be called layering,
while the multidimensional contrapuntal composition, braiding. The par-
allel sequences composing a multidimensional braid can, however, have
multiple degrees of interdependence. Thus, a continuous spectrum ex-
ists between total independence and complete coupling for two parallel
sequences.1

1A discussion on coupling measures is beyond the scope of this paper. From
an information theoretic stance though, the mutual information measure I[X;Y] =

5.1. PARALLEL AND SEQUENTIAL COMPOSITION 35

A clear example of tight contrapuntal coupling can be found in the first
measures of Xenakis’ Psappha for solo percussion (Figure 5-1). In this

Figure 5-1: The opening measures of Xenakis’ Psappha for percussion.
Black dots indicate a stroke. Layer B in the score is divided into three
sub-layers numbered 1, 2, 3, each corresponding to a different instrument.
Layers 1 and 2 are perfectly coupled as one is the complement of the other.

passage, sub-layers 1 and 2 are perfectly coupled because they are perfect
complements of each other: B2 = ¬B1.2 i.e., sublayer 1 tells us every-
thing there is to know about layer 2 and vice versa. Note also that sub-
layer 1 (B1) is identical to B3 but delayed by 1 step. Thus, all three lay-
ers are coupled, each pair in varying degrees. This coupling would have
hardly occurred had they been composed independently, with no knowl-
edge of each other. Either two lines are composed based on one original
“source” line (this is actually what Xenakis did) —we might call this
horizontal braiding—, or all three are composed as a three-dimensional
sequence —vertical braiding. The first approach might go something like
this: First define B2 = (1101101010111110110110110101110101011110)3;
then define B1 = ¬B2; then B3[n] = B1[n+ 1] for all n; finally B = B1 ‖
B2 ‖ B3.

For the second method (vertical braiding) we take each vertical config-
uration as a“character” in our alphabet. Thus we move from A to A3.
There are 23 possible words in this alphabet (

.

.

. ,
.
.
.

r
,

.

.

.
r, .

.

.r, .
.
.

rr, .
.
.

rr, .
.
.
rr, .

.

.

rrr), but
in the Xenakis fragments only three are used:

.

.

.

r
,

.

.

.
r and

.

.

.
rr. Thus, B can

be composed by concatenating the three characters: let b1 =
.
.
.

r
, b2 =

.

.

.
r,

and b3 =
.
.
.
rr, then B = b2 | b3 | b1 | b2 | b3 | b1 | b3 | b1 | · · · .

H[X] − H[X | Y] is a good place to start. In particular, Kraskov et al.[10] define a

normalized mutual information metric D(X,Y) = 1 − I[X;Y]
H[X,Y]

, which I have used in

[1].
2Refer to [1] for a detailed analysis of the passage.
3Xenakis defines B2 with the following sieve expression: [(δ08 ∨δ18 ∨δ78)∧ (δ15 ∨δ35)]∨

[(δ08 ∨ δ18 ∨ δ28) ∧ δ05] ∨ [δ38 ∧ (δ05 ∨ δ15 ∨ δ25 ∨ δ35 ∨ δ45)] ∨ [δ48 ∧ (δ05 ∨ δ15 ∨ δ25 ∨ δ35 ∨ δ45)] ∨
[(δ58 ∨ δ68) ∧ (δ25 ∨ δ35 ∨ δ45)] ∨ (δ18 ∧ δ25) ∨ (δ68 ∧ δ15).

36 CHAPTER 5. 1-BIT COMPOSITION

While the final sequence is the same for both, the structural composition
is entirely different: the first is a parallel of sequences, the second a
sequence of parallels.

5.1.1 Parallel (simultaneous) Perceptual Streams

Suppose we have two regular impulse sequences x = (800)∆� and y =
(500)∆� with a tatum of T = 0.001 sec. For y, a pulse will be heard every
500/1000 = 1/2 second; for x every 800/1000 = 4/5 second. We want
both to be perceived as parallel independent streams, but simply com-
bining the two with an OR operator (x∨ y) will not work. The mix will
dissolve the regular pattern of each sequence and we will fail to perceive
the two streams we originally intended to carry across. This is because
the impulses in the two sequences are identical and thus indistinguish-
able from each other. They must be made distinct to be perceptually
separable.

In order to hear multiple parallel and perceptually independent streams,
in traditional instrumental writing each of the sequences is assigned to
a different instrument or “voice”. This works because, from a psychoa-
coustic perspective, each instrument has its own distinct timbre. From
a purely acoustic perspective (and very broadly speaking), we can say
that each instrument has it’s own “fingerprint” response to a particu-
lar stimulus. For example: a high-hat and a bass drum can be excited
by hitting them in the exact same way with the same mallet, and yet
they will sound very different. The two instruments respond differently
to the same stroke; thus we can say that they have a different “stroke
response”. The stroke is not unlike an impulse signal in that it is very
short, almost perceptually instantaneous. Thus, the term impulse re-
sponse is the name given to the output of any system given an impulse
as input.4

The same principle can be applied to 1-bit music. A short, high fre-
quency impulse sequence is driven by a low frequency impulse train.
This operation can be perform by convolving a control signal x with a
“voice” or “instrument” signal h.

Definition 23 (Convolution). The convolution (f ∗ g) between two real
functions f and g is defined as the integral of the product of the two

4The impulse response is also called the convolution kernel [15].

5.1. PARALLEL AND SEQUENTIAL COMPOSITION 37

functions, where one is reversed and shifted:

(f ∗ g)(t) ,
∫ ∞
−∞

f(τ)g(t− τ)dτ

Here, we are interested in a discrete time boolean version of this.

Definition 24 (Boolean OR Convolution). Let x be an N point boolean
vector and h an M point boolean vector. The convolution x

∨∗ h, is an
N +M − 1 point sequence defined as

(x
∨∗ h)[n] ,

M−1∨
j=0

x[n− j] ∧ h[j]

Definition 25 (Boolean XOR Convolution).

(x
⊕∗ h)[n] ,

M−1⊕
j=0

x[n− j] ∧ h[j]

Example (OR convolution). Let x = (100000100000), h = (11), and
k = (111), then

x
∨∗ h = (110000110000)

x
∨∗ k = (111000111000).

This minimal example shows how a slow moving pattern can be made
to have different “characters” by convolving it with different, short, high
rate sequences. In a sense, we can think of the convolution between two
boolean signals as one driving the other. i.e., each impulse of the control
sequence x triggers a complete sequence h or k.

The separation between the control signal x and the high rate “finger-
prints” h and k is convenient because it allows us to reuse and replace
one or the other in different situations. Here again we encounter a case
where the separation of parameters is a powerful principle.

38 CHAPTER 5. 1-BIT COMPOSITION

5.2 Modulation and Phasors

A process modulates another if the former governs at least one parameter
of the later. Probably the most well known forms of modulation are
AM (amplitude modulation) and FM (frequency modulation) commonly
applied to sinusoids in sound synthesis and radio broadcast. Here I
discuss modulation in the context of phasors.

Consider the following acceleration sequence:

s = (110101000100100000100010000000100100000101000110)

In delta notation: s∆ = (1, 2, 2, 4, 3, 6, 4, 8, 3, 6, 2, 4, 1, 2)∆. How might we
construct this sequences? A sieve XOR decomposition of s gives rc(30, 0),
rc(32, 1), rc(19, 3), rc(34, 5), rc(36, 9), rc(34, 12), rc(30, 18). Not very
intuitive in terms of a way of constructing the sequence s. There is
hardly a clear connection between the sieve basis function and s. In
modeling a sequence we want a compact representation and a practical
tool having few and meaningful parameters. Note that the sequence has
a pattern; in the inter-impulse-interval sequence, even indexes (counting
from 0) are multiples of 1, odd indexes are multiples of 2:

(1,�, 2,�, 3,�, 4,�, 3,�, 2,�, 1)∆

(�, 2,�, 4,�, 6,�, 8,�, 6,�, 4,�, 2)∆

Taking the sequence as a succession of pairs we see that the ratio between
numbers in each pair is the same, 1 : 2, repeating several times at varying
scales, as if a ratchet was being played progressively slower and then
faster. Thus, the sequence can be constructed as 1 · (1, 2)∆ | 2 · (1, 2)∆ |
3 · (1, 2)∆ | 4 · (1, 2)∆ | 3 · (1, 2)∆ | 2 · (1, 2)∆ | 1 · (1, 2)∆.

In Section 4.3 I discuss phasors as cyclical patterns that are unique in
terms of their inter-impulse-interval configurations. i.e., they define an
equivalence class of boolean cycles on the basis of their inter-impulse-
intervals. s can then be modeled simply as a phasor x0

φ = (110)0
φ rotated

at different speeds. For this a function f : Z → B can be defined as
follows:

f(pn) =
{
x0
φ[pn], if d(pn) 6= 0

0, otherwise,

where d(pn) is the difference of pn: pn−pn−1. The function takes a phase
step p and returns ‘1’ or ‘0’.

5.3. HIERARCHIC STOCHASTIC FINITE STATE MACHINES 39

Then s = (f(pi)) for all pi in the phase sequence

p = (0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, · · · , 15, 15, 16, 16, 17, 17, 18, 19, 20).

This model also provides a simple way of adding some irregularity to
arbitrary periodic sequences. e.g., drive f(·) with p+ r, where r is some
form of noise.

5.3 Hierarchic stochastic finite state machines

In the previous chapter ε-machines were introduced and an algorithm
for automatic ε-machine reconstruction was described. These finite state
automata can be constructed directly for the purpose of composing se-
quences. Naturally, the characteristics of these sequences will be de-
termined by the graph structure of the machine and the probabilities
associated with each edge in the graph.

While each state has a distinct probability map associated with the al-
phabet A, the overall machine as a whole is stationary in the sense that
these probability functions aren’t expected to change. After the output
of the machine reaches a certain length, the generated sequence will be-
gin to feel stationary. In order to overcome this, the machine needs to
grow larger, with more states and more connections between states. Un-
fortunately, the complexity of these machines can grow to become quite
unmanageable quickly. There are, however, two practical and intuitive
ways to manage this. In both alternatives, instead of constructing a
single, large finite state machine with many states and edges from the
outset, we can create various small machines that can then:

1. be connected to each other at one or a few places (Figure 5-2).
2. be hierarchically nested, so that one machines activates other ma-

chines, which in turn activate other machines, . . . , which in turn
output characters from the alphabet of interest: A (Figure 5-3). In
this case, an additional null state must be added to all but the out-
ermost machine to trigger their termination, allowing the traversal
of the machine hierarchy.

A hierarchical machine is not unlike what one normally finds in many
musical structures. e.g., motives, which are structured into themes,
which are structured into phrases, which are structured into sections.
The difference with hierarchical finite state machines is that these are

40 CHAPTER 5. 1-BIT COMPOSITION

Figure 5-2: Example of three independently constructed ε-machines con-
nected together to form a single larger ε-machine.

Figure 5-3: Example of a thee-level hierarchy of two and one state ε-
machines.

stochastic at all levels, not deterministic. However, since the probabili-
ties associated with the edges can be arbitrarily defined, anything in the
spectrum between uniform randomness and complete determinism can
be constructed.

5.4 Fonoptera and the Tepozchiquilichtli Studies

The models and methods described in this paper have been implemented
in sofware and used to compose a series of 1-bit music studies titled
Tepozchiquilichtli5 and a piece for eight 1-bit instruments and four MIDI
player pianos that stems from these studies, titled Fonoptera. In what

5Tepozchiquilichtli: (Nahuatl to Spanish transliteration) tepoz metal + chiquilichtli
cicada.

5.4. FONOPTERA AND THE TEPOZCHIQUILICHTLI STUDIES41

follows I will give a brief description of the use of these tools in some of
the Tepozchiquilichtli studies and Fonoptera.

Tepozchiquilichtli I

Tepozchiquilichtli I is comprised of two section. The first is composed of
seven concurrent periodic sequences whose frequencies varies constantly.
The opening of the piece is upward moving glissandi that mimic the
song of some cicadas. These are implemented as simple (1)φ phasors.
Each of the multiple phasors is then convolved with a different high
rate convolution kernel (as described in section 5.1.1) to make them all
perceptibly distinct from one another.

Just as ASCII art approximates high resolution photographs with the
limited ASCII character set, the second section of Tepozchiquilichtli I
is based on the idea of making the best frequency domain 1-bit ap-
proximation of 16-bit recordings. The reconstruction alphabet in this
case is the set of all boolean cycles c�i up to an arbitrary maximum
period. The algorithm for finding the sequence of irreducible boolean
cycles (c�a, c�b, c�c, · · ·) that is spectrally closest to the original 16-bit
sequence s is the following:

1. Take the STFT (Short Time Fourier Transform) S of an audio
recording s.

2. Take the Fourier Transform Ci of each and every boolean cycle c�i
(see Section 4.2) up to an arbitrary maximum period.

3. For each STFT slice Sj , find the Ci most similar to it: arg max
i
〈Sj , Ci〉,

where 〈Sj , Ci〉 =
∑

k Sj [k]Ci[k].
4. Create a new sequence z composed by concatenating all the boolean

cycles that were found closest to Sj for all j.

Tepozchiquilichtli II

The composition of Tepozchiquilichtli II is the simplest and most com-
pact of studies I-VI; it is, actually, trivial. Nevertheless it demonstrates
one of the nice properties of sieves, which is that long continuously
changing sequences (and thus, memory hungry from the point of view of
ε-machines) can be easily created. The study is composed of an intro-
duction, which is a gradual acceleration of phasor (1)φ, followed by the

42 CHAPTER 5. 1-BIT COMPOSITION

following sieve expression:

14∨
i=0

rc(293 + i, 19 · i)

The sieve defines a set of displaced poly-rhythms with ratios 293 : 294 :
· · · : 307. Combined, they form a single, slowly moving sequence of pulses
that seem to flow in and out.

Tepozchiquilichtli III

The main musical construct in Tepozchiquilichtli III is a parallel combi-
nation of phasors (1)φ all driven at the same rate (i.e., having the same
period) but with slightly different amounts of jitter, causing the phasors
to gradually move out of phase relative to each other. At frequencies
within the pitch range, this construct creates a sound with a fixed pitch
but varying timbre. The number of phasors staked together and the
amount of jitter are the two parameters that control the timbre. The
greater the jitter, the noisier the sequence. Thus, this study explores
variations of timbre around a single pitch, and the spectrum between
pitched sounds and noise.

Tepozchiquilichtli VI

From a perceptual perspective, this is a study on perceived rhythm and
timbre, and the fuzzy in between. Structurally, it is a study on simple
two-state stochastic finite automata like the ones discussed in Section
4.5. If we limit the universe of two-state machines to those where each
state has two edges (i.e., those machines where each state has exactly
the same number of edges as there are states in the machine), then there
are only the three possibilities depicted in Figure 5-4.

The three machines will generate different kinds of sequences due to
their different graph structures, but the probabilities associated with the
edges also determine the quality of the sequences generated. Because
there are two states, there are two morphs P(a|σ1), and P(a|σ2), and
four probabilities total, two per state: p = P(a|σ1), 1 − p = P(¬a|σ1),
q = P(b|σ2), and 1 − q = P(¬b|σ2). These four probabilities can be
assigned to the edges in four different ways. Thus, one and the same
two-state machine graph can generate sequences with different qualities
depending on how the probabilities are assigned to the edges.

5.4. FONOPTERA AND THE TEPOZCHIQUILICHTLI STUDIES43

1 2
w : p

x : 1− p

y : q

z : 1− q

1 2
w : p

x : 1− p

y : q

z : 1− q

1 2

w : p

x : 1− p

y : q

z : 1− q

Figure 5-4: The three possible two-state machines with two edges per state.

Tepozchiquilichtli VI is entirely composed from a single stochastic finite
state machine with eight states (Figure 5-5). The machine is constructed
out of four interconnected two-state sub-machine “kernels”; specifically,
the third two-state machine in Figure 5-4 with the two self loops. The
difference between the four two-state kernel machines is in the way the
four probabilities p, 1− p, q, and 1− q are assigned to the four edges of
each machine.

The alphabet of this machine is composed not of isolated boolean values
1 and 0, but of short boolean vectors. Thus, each edge of the machine
throws a boolean sequence rather than just a single boolean symbol. The
whole machine takes eight sequences labeled w, x, y, z, a, b, c, d. The
first four are used in each and every two-state sub-machine; the last four
are for the edges connecting the four two-state sub-machines. While the
machine remains unchanged throughout the whole piece, the definition
of the alphabet (the vectors associated with each edge) changes. For
example, for one section w = (01), x = (01), y = (10), z = (010), while
for another w = (100), x = (0), y = (110), z = (01).

Fonoptera

Fonoptera: from Greek, fono sound + pteron wing; read sounding insect.

44 CHAPTER 5. 1-BIT COMPOSITION

1 2

3 4

56

78

x : 0.2
y : 0.8

z : 0.2

w : 0.7

a : 0.1

x : 0.2
y : 0.8

z : 0.7

w : 0.2

b : 0.1

x : 0.8
y : 0.2

z : 0.7

w : 0.2

c : 0.1

x : 0.8
y : 0.2

z : 0.2

w : 0.7

d : 0.1

Figure 5-5: The eight state machine used to construct Tepozchiquilichtli VI.

Fonoptera represents the culmination of a period of my own research
into the world of 1-bit music. It is written for eight custom-made 1-bit
instruments (see Appendix B) and four mute MIDI pianos. Because the
piece is about 1-bit music, the pianos are brought closer to the sound
world of my custom made 1-bit instruments by damping their strings to
avoid the production of clear pitches and by using the same dynamic level
for every stroke. All twelve instruments are controlled and synchronized
with a single computer.

Fonoptera is composed of seven sections, five of them deriving from the
Tepozchiquilichtli studies. The first section is an introduction that con-
sists of a gradual de-phasing of two regular pulses. This introduction
is only played by the 1-bit instruments. The second section is built
on Tepozchiquilichtli II, and is the superposition of eight simple regular
pulses with periods 410, 411, 412, 413, 414, 415, 416, 417 and 418; it
is played only by piano 1, and serves as a stable context from which
chaos will later emerge. The third section marks a sudden jump from
simple regular structures to randomized sequences. It is characterized
by the superposition of three parallel stochastic machines, each running
at a different rate: tatums 800 ms, 83 ms and 25 ms. Thus the same

5.4. FONOPTERA AND THE TEPOZCHIQUILICHTLI STUDIES45

machine is run (and heard) below and above the rate of pitch percep-
tion. In addition, each is executed with a different instrument/timbre:
the low strings of the piano, the high strings of the piano, and the 1-bit
cicada instruments. Section four derives from Tepozchiquilichtli IV and
is characterized by the recurrence of an acceleration gesture that starts
at approximately 12 Hz (the sub-pitch range) and ends in frequencies of
around 130 Hz. Section five is derived from Tepozchiquilichtli VI, and
marks a return to irregular rhythms. As in section 3, in this section a
single stochastic machine is run at different rates. Here, however, the
sequences are arranged sequentially rather than in parallel; thus, the lis-
tener is made to experience different percepts—from the same kinds of
sequences—due to the difference in playback rates. Section six is based
on Tepozchiquilichtli III and is executed by the 1-bit cicada instruments
exclusively. It is the loudest and most intense section of the piece; it is
the insects’ desperate call for the rain, and a sign of their demise. The
final section, the rain, is a wash of irregular impulses whose mean fre-
quency and variance change constantly and continuously. The section
is derived from Tepozchiquilichtli V, and is executed by both the pianos
and the 1-bit cicada instruments.

46 CHAPTER 5. 1-BIT COMPOSITION

F
igu

re
5-6:

R
ad

ial
scores

for
T
ep

ozch
iq

u
ilich

tli
II,

T
ep

ozch
iq

u
ilich

tli
III,

T
ep

ozch
iq

u
ilich

tli
IV

,
T
ep

ozch
iq

u
ilich

tli
V

an
d

T
ep

ozch
iq

u
ilich

tli
V

I.
T

h
e

360
d

egrees
of

th
e

circle
represen

ts
th

e
totality

of
th

e
d

u
ration

of
each

stu
d

y.
E

ach
im

p
u

lse
is

represen
ted

w
ith

a
rectan

gu
lar

‘tick’
arou

n
d

th
e

circle.
T

h
e

p
osition

of
each

tick
alon

g
th

e
rad

iu
s

(th
e

d
istan

ce
from

th
e

cen
ter)

represen
ts

th
e

in
stru

m
en

t
n

u
m

b
er

execu
tin

g
th

e
im

p
u

lse.

5.4. FONOPTERA AND THE TEPOZCHIQUILICHTLI STUDIES47

F
ig

u
re

5-
7:

R
ad

ia
l

sc
or

es
fo

r
T
ep

oz
ch

iq
u
ili

ch
tl
i
II

,
T
ep

oz
ch

iq
u
ili

ch
tl
i
II
I,

T
ep

oz
ch

iq
u
ili

ch
tl
i
IV

,
T
ep

oz
ch

iq
u
ili

ch
tl
i
V

an
d

T
ep

oz
ch

iq
u
ili

ch
tl
i
V

I.
T

h
e

36
0

d
eg

re
es

of
th

e
ci

rc
le

re
pr

es
en

ts
th

e
to

ta
lit

y
of

th
e

d
u

ra
ti

on
of

ea
ch

st
u

d
y.

E
ac

h
ra

d
ia

l
re

ct
an

gl
e

re
pr

es
en

ts
th

e
d

en
si

ty
of

ev
en

ts
in

th
e

st
u

d
y

at
a

gi
ve

n
ti

m
e-

fr
am

e/
w

in
d

ow
.

T
h

e
gr

ea
te

r
th

e
d

en
si

ty
of

ev
en

ts
,

th
e

ta
lle

r
an

d
th

in
n

er
th

e
re

ct
an

gl
e;

th
e

lo
w

er
th

e
d

en
si

ty
,

th
e

w
id

er
an

d
sh

or
te

r
th

e
re

ct
an

gl
e.

48 CHAPTER 5. 1-BIT COMPOSITION

49

Appendix A

Notation

N Set of natural numbers including 0.
N∗ Set of natural numbers excluding 0.
B Boolean set {1, 0}.

x Scalar variable.
x Vector.
x Two-dimensional matrix.
x[n] Sequence indexing. Returns the n the element or x.
xi, si Similar to x[n], this is the ith element of x (or s).

∼� Cyclically equivalent.

〈a, b〉 Inner product of a and b.

∧ Logical AND.
∨ Logical OR.
⊕ Logical XOR.
¬ Logical NOT.

P(a) Probability of a.
P(a | b) Probability of a given b.
S A random variable.

50 APPENDIX A. NOTATION

51

Appendix B

1-bit Instrument Construction

In looking for a truly 1-bit mechanical device I started to experiment with
dot matrix printers. The print head of these machines is an array of tiny
hammers. These hammers push the ink against the paper, following the
exact same mechanism as the even older mechanical typewriters dating
back to the XIXth century. After some iterations of hacking dot matrix
printers—keeping those parts I actually needed and removing those I
did not—I ended up with the construction shown in Figure B-1. Each of
these 1-bit instruments is made of one dot matrix print head mounted
on a wooden base and a plastic cap held floating in front of the print
head with three springs. When the print head triggers, its little hammers
strike the plastic cap projecting the sound forward.1

Controlling the Instruments

A dot matrix print head is an array of tiny solenoids (i.e., electrical
hammers). Each of the solenoids in the head is activated with a 35
volt impulse lasting no more than 100 µs (holding the high voltage much
longer will burn the solenoids). I have used the Arduino2 micro-controller
platform to control several print heads simultaneously. The Arduino
board, however, operates on 5 volts. In order to drive the dot matrix
print heads with the micro-controller, an intermediary driver is required;
the function of this driver is to send the appropriate 35 volts to the print
head upon receiving a 5 volt signal from the Arduino. I designed and
built a simple dot matrix print head driver for this purpose. The heart

1The insect wings that are carved into the wooden base are not, as most people
think, butterfly wings, but open cicada wings. The sound of these instruments always
reminds me of the beautiful songs of cicadas. The carved wings are my little tribute
to those wondrous musicians.

2http://www.arduino.cc/

52 APPENDIX B. 1-BIT INSTRUMENT CONSTRUCTION

Figure B-1: Custom built 1-bit instrument. The instrument comprises a
wooden base, a dot matrix print head, a plastic cap, wire and springs.

of the driver is an array of eight TIP120 transistors, each of which serves
as a gate; when the Arduino sends a 5 volt impulse to a transistor, it in
turn sends a 35 volt impulse to the corresponding print head solenoid.

53

The print head driver also comprises a 74HC595N shift register. This
is essentially a bit array with sequential input and parallel output; the
array is filled one bit at a time, and outputs all its bits simultaneously.
Its purpose is to synchronize the multiple print heads connected to the
board. The board is also designed so that multiple copies of it can be
connected in series, allowing one to control more than eight solenoids
simultaneously.

Figure B-2 shows the schematic of the dot matrix print head driver, and
Figure B-3 shows the PCB design. Finally, Figures B-4 and B-5 show
the final construction of the print head driver board and the Arduino
micro-controller connected to it.

Figure B-2: Solenoid driver borad schematics. A 74HC595N shift register
distributes 5 volt impulses to eight TIP120 transistors.

54 APPENDIX B. 1-BIT INSTRUMENT CONSTRUCTION

Figure B-3: Solenoid driver borad traces.

Figure B-4: Solenoid driver board construction. The pre-soldered board is
shown from the bottom (left), and from the top with components added
(right).

55

Figure B-5: Solenoid driver borad connected to the Arduino board.

56 APPENDIX B. 1-BIT INSTRUMENT CONSTRUCTION

Bibliography 57

Bibliography

[1] V. Adán. Xenakis’ Psappha, 2009. Unpublished.

[2] G. Boole. An Investigation of the Laws of Thought. Project Guten-
berg, 2005. First published in 1854.

[3] J. P. Crutchfield. The calculi of emergence: Computation, dynam-
ics, and induction. Physica D, 75:11–54, 1994.

[4] J. P. Crutchfield and D. P. Feldman. Regularities unseen,
randomness observed: Levels of entropy convergence, 2001.
http://arxiv.org/abs/cond-mat/0102181v1.

[5] J. P. Crutchield and K. Young. Inferring statistical complexity.
Physical review letters, 63(2):105–108, 1989.

[6] J. Estrada and V. Adán. La transformación continua de la forma
de onda por medio del potencial combinatorio de sus intervalos
de tiempo. Technical report, Universidad Nacional Autónoma de
México, 2002. Presented at the International Simposium of Musical
Acoustics, Mexico City.

[7] D. Feldman. A brief introduction to: Information theory, excess en-
tropy and computational mechanics. Technical report, Department
of Physics, University of California, Berkeley, 2002.

[8] H. G. Flegg. Boolean Algebra and its Application. Blackie & Son,
Limited, 1964.

[9] E. Jones. Residue-class sets in the music of Iannis Xenakis: An an-
alytical algorithm and a general intervallic expression. Perspectives
of New Music, 39(2):229–261, 2001.

58 Bibliography

[10] A. Kraskov, H. Stogbauer, R. G. Andrzejak, and P. Grass-
berger. Hierarchical clustering based on mutual information, 2003.
http://arxiv.org/abs/q-bio/0311039.

[11] W. A. Sethares. Rhythm and Transforms. Springer-Verlag, 2007.

[12] C. R. Shalizi. Causal Architecture, Complexity and Self-organization
in Time Series and Cellular Automata. PhD thesis, University of
Wisconsin at Madison, 2001.

[13] C. R. Shalizi. Blind construction of optimal nonlinear recursive
predictors for discrete sequences. In M. Chickering and J. Halpern,
editors, Proceedings of the Twentieth Conference on Uncertainty
in Artificial Intelligence (UAI 2004), pages 504–511. AUAI Press,
2004.

[14] B. Sklar. Digital Communications. Prentice Hall, 2001.

[15] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal
Processing. California Techinical Publishing, 1997.

[16] I. Xenakis. Towards a metamusic. Tempo, 93:2–19, 1970.

[17] I. Xenakis. Sieves. Perspectives of New Music, 28(1):58–78, 1990.

